Javvanny commited on
Commit
b68ee3b
·
verified ·
1 Parent(s): 1de59b5

Upload 24 files

Browse files
F1_curve.png ADDED
PR_curve.png ADDED
P_curve.png ADDED
R_curve.png ADDED
args.yaml ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: D:\python_project\Yolo8\runs\detect\yolov8m_LTC15\weights\last.pt
4
+ data: custom_data.yaml
5
+ epochs: 50
6
+ time: null
7
+ patience: 100
8
+ batch: 32
9
+ imgsz: 640
10
+ save: true
11
+ save_period: 10
12
+ cache: false
13
+ device: 0
14
+ workers: 8
15
+ project: null
16
+ name: yolov8m_LTC15
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 42
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: D:\python_project\Yolo8\runs\detect\yolov8m_LTC15\weights\last.pt
28
+ amp: true
29
+ fraction: 1
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: true
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: true
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: false
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.015
74
+ lrf: 0.005
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.0
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 20
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: 0.0
99
+ mixup: 0.0
100
+ copy_paste: 0.0
101
+ auto_augment: randaugment
102
+ erasing: 0.4
103
+ crop_fraction: 1.0
104
+ cfg: null
105
+ tracker: botsort.yaml
106
+ save_dir: runs\detect\yolov8m_LTC15
confusion_matrix.png ADDED
confusion_matrix_normalized.png ADDED
labels.jpg ADDED
labels_correlogram.jpg ADDED
predictions.json ADDED
The diff for this file is too large to render. See raw diff
 
results.csv ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 1.5873, 2.4585, 1.0326, 0.70846, 0.55946, 0.63189, 0.30453, 1.946, 1.2285, 1.0048, 0.0033255, 0.0033255, 0.0033255
3
+ 2, 1.4486, 0.96403, 1.0206, 0.73108, 0.63604, 0.66249, 0.29394, 1.9678, 0.99638, 1.044, 0.0065264, 0.0065264, 0.0065264
4
+ 3, 1.5172, 1.0405, 1.0599, 0.69597, 0.27989, 0.4006, 0.2064, 2.0124, 2.334, 1.1281, 0.0095945, 0.0095945, 0.0095945
5
+ 4, 1.5563, 1.0736, 1.0998, 0.7635, 0.57345, 0.59139, 0.27589, 2.0283, 1.1898, 1.0945, 0.009403, 0.009403, 0.009403
6
+ 5, 1.4432, 0.9486, 1.0649, 0.73597, 0.62885, 0.67255, 0.37744, 1.6085, 0.98386, 1.0071, 0.009204, 0.009204, 0.009204
7
+ 6, 1.382, 0.86505, 1.0388, 0.73958, 0.63374, 0.67208, 0.34715, 1.6872, 0.93489, 1.0259, 0.009005, 0.009005, 0.009005
8
+ 7, 1.301, 0.79789, 1.0165, 0.86964, 0.71747, 0.7572, 0.43376, 1.4807, 0.76019, 0.96526, 0.008806, 0.008806, 0.008806
9
+ 8, 1.2704, 0.7621, 1.003, 0.84873, 0.73673, 0.77927, 0.44083, 1.4835, 0.75299, 0.95721, 0.008607, 0.008607, 0.008607
10
+ 9, 1.2268, 0.72808, 0.99157, 0.877, 0.75572, 0.80644, 0.46706, 1.3906, 0.68153, 0.92355, 0.008408, 0.008408, 0.008408
11
+ 10, 1.2112, 0.70085, 0.98574, 0.85687, 0.71251, 0.76846, 0.45865, 1.372, 0.72622, 0.938, 0.008209, 0.008209, 0.008209
12
+ 11, 1.1941, 0.69642, 0.97997, 0.82962, 0.66776, 0.72805, 0.44342, 1.3919, 0.80002, 0.96298, 0.00801, 0.00801, 0.00801
13
+ 12, 1.1643, 0.66954, 0.96922, 0.87926, 0.77873, 0.81369, 0.50454, 1.2633, 0.65566, 0.89974, 0.007811, 0.007811, 0.007811
14
+ 13, 1.1364, 0.65312, 0.96274, 0.9082, 0.78826, 0.84282, 0.51765, 1.2593, 0.61577, 0.90122, 0.007612, 0.007612, 0.007612
15
+ 14, 1.1171, 0.62955, 0.95927, 0.89537, 0.74796, 0.81307, 0.51625, 1.1916, 0.62167, 0.90146, 0.007413, 0.007413, 0.007413
16
+ 15, 1.1068, 0.62592, 0.95012, 0.90115, 0.77275, 0.83547, 0.5316, 1.1549, 0.60403, 0.89612, 0.007214, 0.007214, 0.007214
17
+ 16, 1.0937, 0.61269, 0.94502, 0.91775, 0.80721, 0.85655, 0.53896, 1.2196, 0.58336, 0.88936, 0.007015, 0.007015, 0.007015
18
+ 17, 1.0584, 0.59292, 0.93878, 0.90386, 0.78522, 0.85313, 0.54729, 1.1357, 0.56828, 0.88486, 0.006816, 0.006816, 0.006816
19
+ 18, 1.0583, 0.5849, 0.93532, 0.89637, 0.78581, 0.85128, 0.55096, 1.1497, 0.58236, 0.88047, 0.006617, 0.006617, 0.006617
20
+ 19, 1.0501, 0.58056, 0.94012, 0.89474, 0.81405, 0.86199, 0.556, 1.1354, 0.55043, 0.87615, 0.006418, 0.006418, 0.006418
21
+ 20, 1.0378, 0.57237, 0.93315, 0.89671, 0.805, 0.85702, 0.55753, 1.1181, 0.54184, 0.8723, 0.006219, 0.006219, 0.006219
22
+ 21, 1.0241, 0.55861, 0.92608, 0.92138, 0.80588, 0.85769, 0.57619, 1.0772, 0.52479, 0.85957, 0.00602, 0.00602, 0.00602
23
+ 22, 1.0231, 0.5603, 0.93061, 0.92723, 0.80281, 0.86867, 0.59345, 1.042, 0.5126, 0.86613, 0.005821, 0.005821, 0.005821
24
+ 23, 1.0002, 0.54112, 0.91974, 0.93363, 0.81724, 0.88043, 0.59791, 1.0433, 0.50852, 0.86186, 0.005622, 0.005622, 0.005622
25
+ 24, 0.9941, 0.53265, 0.92189, 0.92443, 0.81808, 0.87686, 0.59901, 1.0122, 0.50224, 0.86147, 0.005423, 0.005423, 0.005423
26
+ 25, 0.98121, 0.52903, 0.91754, 0.92108, 0.8302, 0.88232, 0.60394, 0.99371, 0.48711, 0.85757, 0.005224, 0.005224, 0.005224
27
+ 26, 0.97954, 0.52205, 0.91232, 0.93222, 0.81833, 0.87986, 0.59219, 1.0479, 0.49569, 0.86292, 0.005025, 0.005025, 0.005025
28
+ 27, 0.95345, 0.51328, 0.9091, 0.94663, 0.80672, 0.8752, 0.59978, 1.0412, 0.49653, 0.86651, 0.004826, 0.004826, 0.004826
29
+ 28, 0.94624, 0.50555, 0.90668, 0.93866, 0.83121, 0.89461, 0.608, 1.0637, 0.49542, 0.86243, 0.004627, 0.004627, 0.004627
30
+ 29, 0.9355, 0.49795, 0.90575, 0.93222, 0.83915, 0.89943, 0.61936, 0.98217, 0.46745, 0.85352, 0.004428, 0.004428, 0.004428
31
+ 30, 0.93524, 0.49014, 0.90812, 0.9299, 0.83146, 0.89492, 0.62296, 0.95176, 0.45768, 0.84581, 0.004229, 0.004229, 0.004229
32
+ 31, 0.93426, 0.49275, 0.90629, 0.94177, 0.8445, 0.90423, 0.61372, 1.0071, 0.46689, 0.85168, 0.00403, 0.00403, 0.00403
33
+ 32, 0.91871, 0.47594, 0.89948, 0.93069, 0.83859, 0.89356, 0.61859, 0.96647, 0.46363, 0.84999, 0.003831, 0.003831, 0.003831
34
+ 33, 0.90329, 0.47388, 0.89833, 0.94612, 0.83795, 0.90546, 0.62809, 0.97967, 0.45938, 0.84892, 0.003632, 0.003632, 0.003632
35
+ 34, 0.88817, 0.4642, 0.89444, 0.95223, 0.84051, 0.90496, 0.63047, 0.94973, 0.45057, 0.84695, 0.003433, 0.003433, 0.003433
36
+ 35, 0.88321, 0.46098, 0.88845, 0.94352, 0.83219, 0.89581, 0.61771, 1.0045, 0.46104, 0.84951, 0.003234, 0.003234, 0.003234
37
+ 36, 0.88141, 0.45661, 0.88795, 0.94672, 0.8406, 0.90197, 0.63205, 0.95432, 0.4485, 0.84873, 0.003035, 0.003035, 0.003035
38
+ 37, 0.8592, 0.44739, 0.8849, 0.94883, 0.84289, 0.90584, 0.63648, 0.92547, 0.4393, 0.84066, 0.002836, 0.002836, 0.002836
39
+ 38, 0.85332, 0.43541, 0.87937, 0.94887, 0.84375, 0.90548, 0.64024, 0.92348, 0.4323, 0.8438, 0.002637, 0.002637, 0.002637
40
+ 39, 0.84875, 0.43831, 0.88604, 0.95182, 0.84117, 0.9051, 0.64051, 0.92826, 0.43625, 0.84749, 0.002438, 0.002438, 0.002438
41
+ 40, 0.84, 0.43253, 0.88122, 0.94952, 0.84495, 0.90603, 0.63663, 0.93639, 0.43381, 0.84356, 0.002239, 0.002239, 0.002239
42
+ 41, 0.79814, 0.37959, 0.85645, 0.95466, 0.84619, 0.91339, 0.65306, 0.90524, 0.42344, 0.84097, 0.00204, 0.00204, 0.00204
43
+ 42, 0.78485, 0.3714, 0.85635, 0.95135, 0.84751, 0.91136, 0.65072, 0.91793, 0.43035, 0.84226, 0.001841, 0.001841, 0.001841
44
+ 43, 0.77144, 0.36579, 0.85391, 0.94764, 0.84521, 0.91104, 0.65279, 0.91176, 0.42632, 0.84586, 0.001642, 0.001642, 0.001642
45
+ 44, 0.75875, 0.36084, 0.85189, 0.9526, 0.84546, 0.91569, 0.6575, 0.89942, 0.42348, 0.83979, 0.001443, 0.001443, 0.001443
46
+ 45, 0.74944, 0.3561, 0.85001, 0.95601, 0.84497, 0.91817, 0.65474, 0.91055, 0.42331, 0.84095, 0.001244, 0.001244, 0.001244
47
+ 46, 0.73747, 0.34758, 0.8478, 0.9564, 0.84309, 0.91901, 0.65179, 0.92297, 0.43147, 0.84384, 0.001045, 0.001045, 0.001045
48
+ 47, 0.7246, 0.33918, 0.84076, 0.94592, 0.84217, 0.9128, 0.65616, 0.91046, 0.42518, 0.84255, 0.000846, 0.000846, 0.000846
49
+ 48, 0.71687, 0.33174, 0.84134, 0.94621, 0.84357, 0.91487, 0.65932, 0.90268, 0.41803, 0.84084, 0.000647, 0.000647, 0.000647
50
+ 49, 0.71337, 0.32973, 0.83963, 0.94936, 0.84424, 0.9181, 0.66262, 0.89847, 0.418, 0.84116, 0.000448, 0.000448, 0.000448
51
+ 50, 0.6999, 0.32162, 0.83415, 0.95408, 0.84403, 0.92121, 0.663, 0.89543, 0.41845, 0.84129, 0.000249, 0.000249, 0.000249
results.png ADDED
train_batch0.jpg ADDED
train_batch1.jpg ADDED
train_batch17120.jpg ADDED
train_batch17121.jpg ADDED
train_batch17122.jpg ADDED
train_batch2.jpg ADDED
val_batch0_labels.jpg ADDED
val_batch0_pred.jpg ADDED
val_batch1_labels.jpg ADDED
val_batch1_pred.jpg ADDED
val_batch2_labels.jpg ADDED
val_batch2_pred.jpg ADDED