File size: 28,906 Bytes
0f6f99d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Walmart Connect provides house advertising offerings.
  sentences:
  - What was the fair value per performance-based share granted for the fiscal years
    2023, 2022, and 2021?
  - What services does Walmart Connect offer?
  - By how much did membership fees increase in 2023?
- source_sentence: The total revenue for 2023 was reported as $371,620 million.
  sentences:
  - What was the percentage increase in Humalog revenue from 2022 to 2023?
  - What was the total revenue for the year 2023?
  - What were the primary factors influencing profitability in the automotive market
    in 2023?
- source_sentence: •LinkedIn revenue increased 10%.
  sentences:
  - By what percentage did LinkedIn's revenue increase in fiscal year 2023?
  - What factors influence the recording of the Company's credit-related contingent
    features in financial statements?
  - What is the average tenure of associates at the company as of December 31, 2023?
- source_sentence: Cash flows from operating activities in 2023 were primarily generated
    from management and franchise fee revenue and operating income from owned and
    leased hotels.
  sentences:
  - What is the significance of the Company’s trademarks to their businesses?
  - By what percentage did the S&P 500 Index increase in 2023 compared to the end
    of 2022?
  - What were the primary sources of operating activities cash flow in 2023?
- source_sentence: The par call date for the 7% Notes due 2029 is August 15, 2025,
    allowing for redemption at par from this date onward.
  sentences:
  - What is the earliest date on which the 7% Notes due 2029 can be redeemed at par?
  - What are some of the initiatives managed by Visa for supporting underrepresented
    communities?
  - Who are the competitors for Microsoft's server applications in PC-based environments?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6942857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8314285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8728571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9071428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6942857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27714285714285714
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17457142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09071428571428569
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6942857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8314285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8728571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9071428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8042383857063928
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7708656462585032
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7746128511093645
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6985714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8371428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.87
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9114285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6985714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27904761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09114285714285714
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6985714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8371428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.87
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9114285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8075815858913178
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7741315192743762
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7776656953157759
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.83
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.86
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9071428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17199999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0907142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.83
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.86
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9071428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8048199967282856
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7720073696145123
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.775510167698765
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.67
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8185714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8571428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8971428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.67
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27285714285714285
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1714285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0897142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.67
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8185714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8571428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8971428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7867880427582347
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7511031746031744
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7551868866444579
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.65
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7914285714285715
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8385714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8785714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.65
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26380952380952377
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16771428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08785714285714286
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.65
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7914285714285715
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8385714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8785714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7645553995345995
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.727849206349206
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.73258711812532
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Jaswanth160/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'The par call date for the 7% Notes due 2029 is August 15, 2025, allowing for redemption at par from this date onward.',
    'What is the earliest date on which the 7% Notes due 2029 can be redeemed at par?',
    'What are some of the initiatives managed by Visa for supporting underrepresented communities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6943     |
| cosine_accuracy@3   | 0.8314     |
| cosine_accuracy@5   | 0.8729     |
| cosine_accuracy@10  | 0.9071     |
| cosine_precision@1  | 0.6943     |
| cosine_precision@3  | 0.2771     |
| cosine_precision@5  | 0.1746     |
| cosine_precision@10 | 0.0907     |
| cosine_recall@1     | 0.6943     |
| cosine_recall@3     | 0.8314     |
| cosine_recall@5     | 0.8729     |
| cosine_recall@10    | 0.9071     |
| cosine_ndcg@10      | 0.8042     |
| cosine_mrr@10       | 0.7709     |
| **cosine_map@100**  | **0.7746** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6986     |
| cosine_accuracy@3   | 0.8371     |
| cosine_accuracy@5   | 0.87       |
| cosine_accuracy@10  | 0.9114     |
| cosine_precision@1  | 0.6986     |
| cosine_precision@3  | 0.279      |
| cosine_precision@5  | 0.174      |
| cosine_precision@10 | 0.0911     |
| cosine_recall@1     | 0.6986     |
| cosine_recall@3     | 0.8371     |
| cosine_recall@5     | 0.87       |
| cosine_recall@10    | 0.9114     |
| cosine_ndcg@10      | 0.8076     |
| cosine_mrr@10       | 0.7741     |
| **cosine_map@100**  | **0.7777** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7        |
| cosine_accuracy@3   | 0.83       |
| cosine_accuracy@5   | 0.86       |
| cosine_accuracy@10  | 0.9071     |
| cosine_precision@1  | 0.7        |
| cosine_precision@3  | 0.2767     |
| cosine_precision@5  | 0.172      |
| cosine_precision@10 | 0.0907     |
| cosine_recall@1     | 0.7        |
| cosine_recall@3     | 0.83       |
| cosine_recall@5     | 0.86       |
| cosine_recall@10    | 0.9071     |
| cosine_ndcg@10      | 0.8048     |
| cosine_mrr@10       | 0.772      |
| **cosine_map@100**  | **0.7755** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.67       |
| cosine_accuracy@3   | 0.8186     |
| cosine_accuracy@5   | 0.8571     |
| cosine_accuracy@10  | 0.8971     |
| cosine_precision@1  | 0.67       |
| cosine_precision@3  | 0.2729     |
| cosine_precision@5  | 0.1714     |
| cosine_precision@10 | 0.0897     |
| cosine_recall@1     | 0.67       |
| cosine_recall@3     | 0.8186     |
| cosine_recall@5     | 0.8571     |
| cosine_recall@10    | 0.8971     |
| cosine_ndcg@10      | 0.7868     |
| cosine_mrr@10       | 0.7511     |
| **cosine_map@100**  | **0.7552** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.65       |
| cosine_accuracy@3   | 0.7914     |
| cosine_accuracy@5   | 0.8386     |
| cosine_accuracy@10  | 0.8786     |
| cosine_precision@1  | 0.65       |
| cosine_precision@3  | 0.2638     |
| cosine_precision@5  | 0.1677     |
| cosine_precision@10 | 0.0879     |
| cosine_recall@1     | 0.65       |
| cosine_recall@3     | 0.7914     |
| cosine_recall@5     | 0.8386     |
| cosine_recall@10    | 0.8786     |
| cosine_ndcg@10      | 0.7646     |
| cosine_mrr@10       | 0.7278     |
| **cosine_map@100**  | **0.7326** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 47.11 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.36 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                              | anchor                                                                                                                    |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
  | <code>For some of our medical membership, we share risk with providers under capitation contracts where physicians and hospitals accept varying levels of financial risk for a defined set of membership, primarily HMO membership.</code>                                                                                                                                            | <code>What is the primary type of membership for which risk is shared with providers under capitation contracts?</code>   |
  | <code>Revenue for Comcast's Theme Parks segment is primarily derived from guest spending at the theme parks, including ticket sales and in-park spending on food, beverages, and merchandise.</code>                                                                                                                                                                                  | <code>What is the primary revenue source for Comcast's Theme Parks segment?</code>                                        |
  | <code>In August 2022, the Board of Directors authorized a program to repurchase up to $10.0 billion of the Company’s common stock, referred to as the "Share Repurchase Program". In February 2023, the Board of Directors authorized an additional $10.0 billion in repurchases under the Share Repurchase Program, bringing the aggregate total authorized to $20.0 billion.</code> | <code>What was the total authorization amount for the Share Repurchase Program of the Company as of February 2023?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122     | 10     | 1.5811        | -                      | -                      | -                      | -                     | -                      |
| 0.9746     | 12     | -             | 0.7341                 | 0.7568                 | 0.7632                 | 0.7056                | 0.7660                 |
| 1.6244     | 20     | 0.6854        | -                      | -                      | -                      | -                     | -                      |
| 1.9492     | 24     | -             | 0.7516                 | 0.7705                 | 0.7722                 | 0.7263                | 0.7702                 |
| 2.4365     | 30     | 0.4874        | -                      | -                      | -                      | -                     | -                      |
| **2.9239** | **36** | **-**         | **0.755**              | **0.7747**             | **0.7756**             | **0.7321**            | **0.7739**             |
| 3.2487     | 40     | 0.3876        | -                      | -                      | -                      | -                     | -                      |
| 3.8985     | 48     | -             | 0.7552                 | 0.7755                 | 0.7777                 | 0.7326                | 0.7746                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->