Jasper commited on
Commit
bfeea9c
·
1 Parent(s): b71bdd3

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.59 +/- 14.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e1d65dcf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e1d65dd80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e1d65de10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e1d65dea0>", "_build": "<function ActorCriticPolicy._build at 0x7f5e1d65df30>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e1d65dfc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e1d65e050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e1d65e0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e1d65e170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e1d65e200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e1d65e290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5e1d653e00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673021011957858513, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2phc3Blci8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9qYXNwZXIvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrn2jyY864/VzoqP3Za/r5je/G8haf3vQAAAAAAAAAAs6KXvWzy2rvVIyI+pepxvMaJVL2KgEy9AACAPwAAgD/moBo99oxhuogUobXrXJ2wicGqOXg1sjQAAIA/AACAP2AcPT4cXVu8hiGGu9uskDlqiMO9Wo+kOgAAgD8AAIA/sxjQveG4rboInFo8IyaNPLXvA7pVlnW9AACAPwAAAABt8R++HC4LP26cBD7p6pC+2IyBvUb5Qj0AAAAAAAAAAMCzm73h9sm66hhqvC/8kjxxmxI8IJd+vQAAgD8AAIA/ZnYvu0g/q7rJDgC205IPsZqNlLo0cyA1AACAPwAAgD+KzHW+GQK2PiYp1z2vuYO+i+KDvaLnXzwAAAAAAAAAADPDjruP4ES8QO9wO1QlkjzHnqU9uIhvvQAAgD8AAIA/s7AhvR57hz1aDGc+Df8kvhGh6j1tOpw9AAAAAAAAAACN6Ms9OEHKu+qubLz1CUs9sr76PL0BHjsAAIA/AACAP6Ciq75Mr+0+piL2Pdu2d74ZnAO+S0BNPQAAAAAAAAAAAGXqPDJeqz8d+so+TOjjvoNXwbxpmZu8AAAAAAAAAADmC02+VHTRvPslHjs+IJs5LKw4PlqtUboAAIA/AAAAAM1AG75kJb4+U1BxPWwlpr5aGxa9jOQBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0Vj7O9t3bkCUhpRSlIwBbJRNaQGMAXSUR0Caq8I+W4VidX2UKGgGaAloD0MISMX/HdHKcECUhpRSlGgVTVYBaBZHQJqsMWAPNFB1fZQoaAZoCWgPQwhKea2ErlBxQJSGlFKUaBVNXQFoFkdAmq8VafSQYHV9lChoBmgJaA9DCJl+iXhrUm9AlIaUUpRoFU00AWgWR0CasABLPD51dX2UKGgGaAloD0MIeZRKeMKqb0CUhpRSlGgVTVYBaBZHQJqwS9PDYRN1fZQoaAZoCWgPQwhFf2jmScpxQJSGlFKUaBVNLgFoFkdAmrLbilzltHV9lChoBmgJaA9DCI7pCUu8GXBAlIaUUpRoFU05AWgWR0Cas1M2m52AdX2UKGgGaAloD0MIwcb17/oPbUCUhpRSlGgVTTEBaBZHQJqzZdNWU8p1fZQoaAZoCWgPQwgctFcfj2NwQJSGlFKUaBVNKQFoFkdAmrODdxhlUnV9lChoBmgJaA9DCJOrWPymPnJAlIaUUpRoFU0JAWgWR0CatC5tm+TNdX2UKGgGaAloD0MIfNEeL6SVbUCUhpRSlGgVTTwBaBZHQJq1FkI5YHR1fZQoaAZoCWgPQwjkTulg/elIQJSGlFKUaBVL5WgWR0CatUccU/OddX2UKGgGaAloD0MIi4hi8oaGb0CUhpRSlGgVTRQBaBZHQJq1l/z8P4F1fZQoaAZoCWgPQwiDwTV39P5wQJSGlFKUaBVNXwFoFkdAmrdlvIfbK3V9lChoBmgJaA9DCEUqjC1EkXBAlIaUUpRoFU05AWgWR0CauLb70nPWdX2UKGgGaAloD0MIZohjXVzobUCUhpRSlGgVTSUBaBZHQJq5pOLzf791fZQoaAZoCWgPQwj8qlyoPN1wQJSGlFKUaBVNFgFoFkdAmrnv4Irvs3V9lChoBmgJaA9DCIelgR8VTnBAlIaUUpRoFU0lAWgWR0Cau1lGPPszdX2UKGgGaAloD0MIryMO2UB3cUCUhpRSlGgVTRgBaBZHQJq+Bkf9xZN1fZQoaAZoCWgPQwiZZrrXSXdvQJSGlFKUaBVNHQFoFkdAmr6TziCJ43V9lChoBmgJaA9DCNGy7h8Lxm9AlIaUUpRoFU03AWgWR0CavqaV2Rq5dX2UKGgGaAloD0MI9u/6zFlPRkCUhpRSlGgVS+ZoFkdAmsEt+LFXJnV9lChoBmgJaA9DCHak+s6v7XJAlIaUUpRoFU0aAWgWR0CawYvW6K+BdX2UKGgGaAloD0MI6KIh49EgcUCUhpRSlGgVTRIBaBZHQJrB+WrwOON1fZQoaAZoCWgPQwhi2cwh6VlxQJSGlFKUaBVNKQFoFkdAmsH6UJOWSnV9lChoBmgJaA9DCPzh57+HnG9AlIaUUpRoFU0sAWgWR0CawpdBSk0rdX2UKGgGaAloD0MIYaQXtXv6cUCUhpRSlGgVTTEBaBZHQJrEuT/yXld1fZQoaAZoCWgPQwi5UWStoRNzQJSGlFKUaBVNRAFoFkdAmsVLYPGyX3V9lChoBmgJaA9DCOvjoe9uwW5AlIaUUpRoFU0wAWgWR0Cax1BHTZxrdX2UKGgGaAloD0MIs5YC0r63cUCUhpRSlGgVTR8BaBZHQJrH/XkHUtt1fZQoaAZoCWgPQwgFMdC175lwQJSGlFKUaBVNIQFoFkdAmskcVDa4+nV9lChoBmgJaA9DCFHex9Fck3FAlIaUUpRoFU0dAWgWR0CayTIkqto0dX2UKGgGaAloD0MInG1uTA+lcECUhpRSlGgVTSMBaBZHQJrLAZCOWB11fZQoaAZoCWgPQwiMSBRa1n1xQJSGlFKUaBVL/WgWR0CazHUDdP+GdX2UKGgGaAloD0MIj41AvO7dcECUhpRSlGgVTRABaBZHQJrMvjU/fO51fZQoaAZoCWgPQwiHGRpPBMpwQJSGlFKUaBVNGgFoFkdAms2sXSBsh3V9lChoBmgJaA9DCMe44uKoVHBAlIaUUpRoFU0rAWgWR0Ca0lW8h9srdX2UKGgGaAloD0MIYadYNYipcECUhpRSlGgVTS8BaBZHQJrSot5D7ZZ1fZQoaAZoCWgPQwg+7fDXJJRyQJSGlFKUaBVNRwFoFkdAmtNxXwLE1nV9lChoBmgJaA9DCF71gHlIoXBAlIaUUpRoFU07AWgWR0Ca08vLX+VDdX2UKGgGaAloD0MIeGAA4UMNQUCUhpRSlGgVS9RoFkdAmtPyVKPGQ3V9lChoBmgJaA9DCGfWUkDa8HBAlIaUUpRoFU0RAWgWR0Ca1GIqLCN0dX2UKGgGaAloD0MIFeY9znRTcECUhpRSlGgVTX0BaBZHQJrVyhSLqD91fZQoaAZoCWgPQwhkH2RZcL5wQJSGlFKUaBVNGwFoFkdAmtcIAS39aXV9lChoBmgJaA9DCN7IPPKHUnBAlIaUUpRoFU1iAWgWR0Ca1/iaiKzidX2UKGgGaAloD0MI4PPDCOEdb0CUhpRSlGgVTRkBaBZHQJrYoFr2xpt1fZQoaAZoCWgPQwjJjo1AvARyQJSGlFKUaBVNDAFoFkdAmtl38TBZZHV9lChoBmgJaA9DCMA+OnXl8m9AlIaUUpRoFU0vAWgWR0Ca2bSRr8BNdX2UKGgGaAloD0MIyzDuBtGqQECUhpRSlGgVS99oFkdAmtn0bcXWOXV9lChoBmgJaA9DCF0XfnA+8nFAlIaUUpRoFU0NAWgWR0Ca2o4Wk8A8dX2UKGgGaAloD0MITz3S4LaKPUCUhpRSlGgVS9ZoFkdAmtznxjJ+2HV9lChoBmgJaA9DCGwhyEGJ6XBAlIaUUpRoFU1FAWgWR0Ca3X2QXAM2dX2UKGgGaAloD0MIUFYMV0fTckCUhpRSlGgVTS0BaBZHQJr8tFQVKwp1fZQoaAZoCWgPQwgKvmn6bKFxQJSGlFKUaBVNJQFoFkdAmv2t7KJVKnV9lChoBmgJaA9DCA7Y1eSpinBAlIaUUpRoFU0pAWgWR0Ca/oqZtvXLdX2UKGgGaAloD0MIcVRuohbqcUCUhpRSlGgVTU4BaBZHQJr/SqCHymR1fZQoaAZoCWgPQwi6awn5YPpxQJSGlFKUaBVNKgFoFkdAmv/o4lyBCnV9lChoBmgJaA9DCJ/Nqs/VXVNAlIaUUpRoFUv8aBZHQJsAKwA2hqV1fZQoaAZoCWgPQwhxxjAnaK1wQJSGlFKUaBVNGgFoFkdAmwA1O45LiHV9lChoBmgJaA9DCD1lNV2PoHFAlIaUUpRoFU1ZAWgWR0CbAFLyc0+DdX2UKGgGaAloD0MIkiVzLG9dcUCUhpRSlGgVTR0BaBZHQJsA/Ud7v5R1fZQoaAZoCWgPQwivBb03hmpgQJSGlFKUaBVN6ANoFkdAmwHZhWo3rHV9lChoBmgJaA9DCPZ698c7hHBAlIaUUpRoFU0VAWgWR0CbAjZMcp9adX2UKGgGaAloD0MIGXJsPUN6bUCUhpRSlGgVTSABaBZHQJsCW5rgwXZ1fZQoaAZoCWgPQwigppatdfNwQJSGlFKUaBVNFAFoFkdAmwK/eHi3onV9lChoBmgJaA9DCFX3yOaqK25AlIaUUpRoFU06AWgWR0CbBmAVfu1GdX2UKGgGaAloD0MIfnTqyqdYcUCUhpRSlGgVTS8BaBZHQJsGW2H+Idl1fZQoaAZoCWgPQwjHSPYIdUlyQJSGlFKUaBVNkwFoFkdAmwagiRnvlXV9lChoBmgJaA9DCBssnKT5oxrAlIaUUpRoFUvhaBZHQJsI5as6q811fZQoaAZoCWgPQwiUEReABiBxQJSGlFKUaBVNHwFoFkdAmwmvY4ACGXV9lChoBmgJaA9DCN8Vwf9WLXBAlIaUUpRoFU00AWgWR0CbCcWJJoTPdX2UKGgGaAloD0MIjxfS4WEackCUhpRSlGgVTToBaBZHQJsN33WWhRJ1fZQoaAZoCWgPQwjh0Fs8fAZzQJSGlFKUaBVNOgFoFkdAmw3r1yvLYHV9lChoBmgJaA9DCCGunL2zAXJAlIaUUpRoFU05AWgWR0CbDgMY/FBIdX2UKGgGaAloD0MI2c73U6PRcECUhpRSlGgVTRQBaBZHQJsOFnvlU6x1fZQoaAZoCWgPQwgOaOkKdgFxQJSGlFKUaBVNDAFoFkdAmw4z0+TvA3V9lChoBmgJaA9DCBoUzQPYG21AlIaUUpRoFU0CAWgWR0CbDoWyTpxFdX2UKGgGaAloD0MIzT6PUZ6YcECUhpRSlGgVTR8BaBZHQJsPR6rvLHN1fZQoaAZoCWgPQwgCZylZTqhyQJSGlFKUaBVNjAFoFkdAmxC6xgRbr3V9lChoBmgJaA9DCO5cGOlFkXFAlIaUUpRoFU2JAWgWR0CbEjPAfuCxdX2UKGgGaAloD0MIshGI13WkbUCUhpRSlGgVTRwBaBZHQJsTekHlfZ51fZQoaAZoCWgPQwj/rzpyJGdvQJSGlFKUaBVNHAFoFkdAmxN1c6eXiXV9lChoBmgJaA9DCPXWwFaJ2m5AlIaUUpRoFUv/aBZHQJsU0XrMTvl1fZQoaAZoCWgPQwgUCDvFal1yQJSGlFKUaBVNOgFoFkdAmxUL+Haew3V9lChoBmgJaA9DCHy6umNx6XBAlIaUUpRoFU0qAWgWR0CbF5YOlO45dX2UKGgGaAloD0MIqvBneLMEcECUhpRSlGgVTVsBaBZHQJsaYeyRjjJ1fZQoaAZoCWgPQwi0PA/ujh9wQJSGlFKUaBVNEQFoFkdAmxqeLR8c/HV9lChoBmgJaA9DCJ6VtOKbrm5AlIaUUpRoFU0aAWgWR0CbG1GEf1YhdX2UKGgGaAloD0MIBoNr7uiYcECUhpRSlGgVTSgBaBZHQJsb41DSgGt1fZQoaAZoCWgPQwjEYP4KGUFwQJSGlFKUaBVNJwFoFkdAmxwFQ/HHWHV9lChoBmgJaA9DCPDfvDhxeG9AlIaUUpRoFU0RAWgWR0CbHDDXvphXdX2UKGgGaAloD0MI4NVyZ6aRcECUhpRSlGgVTT8BaBZHQJsdMLgGbCt1fZQoaAZoCWgPQwgei21SkZxzQJSGlFKUaBVNIgFoFkdAmx5hdQfp2XV9lChoBmgJaA9DCHukwW1tAW5AlIaUUpRoFU0HAWgWR0CbHrvLX+VDdX2UKGgGaAloD0MIUd1c/K0RcUCUhpRSlGgVTQcBaBZHQJshpKFqSHN1fZQoaAZoCWgPQwgmqrcGNttwQJSGlFKUaBVNOQFoFkdAmyJN7WuoxnV9lChoBmgJaA9DCCo5J/YQ+nJAlIaUUpRoFU1IAWgWR0CbIwSPluFYdX2UKGgGaAloD0MIJzCd1u2PcECUhpRSlGgVTSsBaBZHQJsjF4IKMNt1fZQoaAZoCWgPQwgMPPce7jRwQJSGlFKUaBVNGQFoFkdAmyh3Roh6jXV9lChoBmgJaA9DCDp4JjRJzHJAlIaUUpRoFU1eAWgWR0CbKKdbxEv1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2phc3Blci8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9qYXNwZXIvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-57-generic-x86_64-with-glibc2.35 #63-Ubuntu SMP Thu Nov 24 13:43:17 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e603c4fc06a49e611f272e176cdbdcbcd8c75dac8ee935785000426ef07f61a
3
+ size 146764
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e1d65dcf0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e1d65dd80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e1d65de10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e1d65dea0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5e1d65df30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5e1d65dfc0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e1d65e050>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5e1d65e0e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e1d65e170>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e1d65e200>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e1d65e290>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f5e1d653e00>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673021011957858513,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2phc3Blci8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9qYXNwZXIvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrn2jyY864/VzoqP3Za/r5je/G8haf3vQAAAAAAAAAAs6KXvWzy2rvVIyI+pepxvMaJVL2KgEy9AACAPwAAgD/moBo99oxhuogUobXrXJ2wicGqOXg1sjQAAIA/AACAP2AcPT4cXVu8hiGGu9uskDlqiMO9Wo+kOgAAgD8AAIA/sxjQveG4rboInFo8IyaNPLXvA7pVlnW9AACAPwAAAABt8R++HC4LP26cBD7p6pC+2IyBvUb5Qj0AAAAAAAAAAMCzm73h9sm66hhqvC/8kjxxmxI8IJd+vQAAgD8AAIA/ZnYvu0g/q7rJDgC205IPsZqNlLo0cyA1AACAPwAAgD+KzHW+GQK2PiYp1z2vuYO+i+KDvaLnXzwAAAAAAAAAADPDjruP4ES8QO9wO1QlkjzHnqU9uIhvvQAAgD8AAIA/s7AhvR57hz1aDGc+Df8kvhGh6j1tOpw9AAAAAAAAAACN6Ms9OEHKu+qubLz1CUs9sr76PL0BHjsAAIA/AACAP6Ciq75Mr+0+piL2Pdu2d74ZnAO+S0BNPQAAAAAAAAAAAGXqPDJeqz8d+so+TOjjvoNXwbxpmZu8AAAAAAAAAADmC02+VHTRvPslHjs+IJs5LKw4PlqtUboAAIA/AAAAAM1AG75kJb4+U1BxPWwlpr5aGxa9jOQBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0Vj7O9t3bkCUhpRSlIwBbJRNaQGMAXSUR0Caq8I+W4VidX2UKGgGaAloD0MISMX/HdHKcECUhpRSlGgVTVYBaBZHQJqsMWAPNFB1fZQoaAZoCWgPQwhKea2ErlBxQJSGlFKUaBVNXQFoFkdAmq8VafSQYHV9lChoBmgJaA9DCJl+iXhrUm9AlIaUUpRoFU00AWgWR0CasABLPD51dX2UKGgGaAloD0MIeZRKeMKqb0CUhpRSlGgVTVYBaBZHQJqwS9PDYRN1fZQoaAZoCWgPQwhFf2jmScpxQJSGlFKUaBVNLgFoFkdAmrLbilzltHV9lChoBmgJaA9DCI7pCUu8GXBAlIaUUpRoFU05AWgWR0Cas1M2m52AdX2UKGgGaAloD0MIwcb17/oPbUCUhpRSlGgVTTEBaBZHQJqzZdNWU8p1fZQoaAZoCWgPQwgctFcfj2NwQJSGlFKUaBVNKQFoFkdAmrODdxhlUnV9lChoBmgJaA9DCJOrWPymPnJAlIaUUpRoFU0JAWgWR0CatC5tm+TNdX2UKGgGaAloD0MIfNEeL6SVbUCUhpRSlGgVTTwBaBZHQJq1FkI5YHR1fZQoaAZoCWgPQwjkTulg/elIQJSGlFKUaBVL5WgWR0CatUccU/OddX2UKGgGaAloD0MIi4hi8oaGb0CUhpRSlGgVTRQBaBZHQJq1l/z8P4F1fZQoaAZoCWgPQwiDwTV39P5wQJSGlFKUaBVNXwFoFkdAmrdlvIfbK3V9lChoBmgJaA9DCEUqjC1EkXBAlIaUUpRoFU05AWgWR0CauLb70nPWdX2UKGgGaAloD0MIZohjXVzobUCUhpRSlGgVTSUBaBZHQJq5pOLzf791fZQoaAZoCWgPQwj8qlyoPN1wQJSGlFKUaBVNFgFoFkdAmrnv4Irvs3V9lChoBmgJaA9DCIelgR8VTnBAlIaUUpRoFU0lAWgWR0Cau1lGPPszdX2UKGgGaAloD0MIryMO2UB3cUCUhpRSlGgVTRgBaBZHQJq+Bkf9xZN1fZQoaAZoCWgPQwiZZrrXSXdvQJSGlFKUaBVNHQFoFkdAmr6TziCJ43V9lChoBmgJaA9DCNGy7h8Lxm9AlIaUUpRoFU03AWgWR0CavqaV2Rq5dX2UKGgGaAloD0MI9u/6zFlPRkCUhpRSlGgVS+ZoFkdAmsEt+LFXJnV9lChoBmgJaA9DCHak+s6v7XJAlIaUUpRoFU0aAWgWR0CawYvW6K+BdX2UKGgGaAloD0MI6KIh49EgcUCUhpRSlGgVTRIBaBZHQJrB+WrwOON1fZQoaAZoCWgPQwhi2cwh6VlxQJSGlFKUaBVNKQFoFkdAmsH6UJOWSnV9lChoBmgJaA9DCPzh57+HnG9AlIaUUpRoFU0sAWgWR0CawpdBSk0rdX2UKGgGaAloD0MIYaQXtXv6cUCUhpRSlGgVTTEBaBZHQJrEuT/yXld1fZQoaAZoCWgPQwi5UWStoRNzQJSGlFKUaBVNRAFoFkdAmsVLYPGyX3V9lChoBmgJaA9DCOvjoe9uwW5AlIaUUpRoFU0wAWgWR0Cax1BHTZxrdX2UKGgGaAloD0MIs5YC0r63cUCUhpRSlGgVTR8BaBZHQJrH/XkHUtt1fZQoaAZoCWgPQwgFMdC175lwQJSGlFKUaBVNIQFoFkdAmskcVDa4+nV9lChoBmgJaA9DCFHex9Fck3FAlIaUUpRoFU0dAWgWR0CayTIkqto0dX2UKGgGaAloD0MInG1uTA+lcECUhpRSlGgVTSMBaBZHQJrLAZCOWB11fZQoaAZoCWgPQwiMSBRa1n1xQJSGlFKUaBVL/WgWR0CazHUDdP+GdX2UKGgGaAloD0MIj41AvO7dcECUhpRSlGgVTRABaBZHQJrMvjU/fO51fZQoaAZoCWgPQwiHGRpPBMpwQJSGlFKUaBVNGgFoFkdAms2sXSBsh3V9lChoBmgJaA9DCMe44uKoVHBAlIaUUpRoFU0rAWgWR0Ca0lW8h9srdX2UKGgGaAloD0MIYadYNYipcECUhpRSlGgVTS8BaBZHQJrSot5D7ZZ1fZQoaAZoCWgPQwg+7fDXJJRyQJSGlFKUaBVNRwFoFkdAmtNxXwLE1nV9lChoBmgJaA9DCF71gHlIoXBAlIaUUpRoFU07AWgWR0Ca08vLX+VDdX2UKGgGaAloD0MIeGAA4UMNQUCUhpRSlGgVS9RoFkdAmtPyVKPGQ3V9lChoBmgJaA9DCGfWUkDa8HBAlIaUUpRoFU0RAWgWR0Ca1GIqLCN0dX2UKGgGaAloD0MIFeY9znRTcECUhpRSlGgVTX0BaBZHQJrVyhSLqD91fZQoaAZoCWgPQwhkH2RZcL5wQJSGlFKUaBVNGwFoFkdAmtcIAS39aXV9lChoBmgJaA9DCN7IPPKHUnBAlIaUUpRoFU1iAWgWR0Ca1/iaiKzidX2UKGgGaAloD0MI4PPDCOEdb0CUhpRSlGgVTRkBaBZHQJrYoFr2xpt1fZQoaAZoCWgPQwjJjo1AvARyQJSGlFKUaBVNDAFoFkdAmtl38TBZZHV9lChoBmgJaA9DCMA+OnXl8m9AlIaUUpRoFU0vAWgWR0Ca2bSRr8BNdX2UKGgGaAloD0MIyzDuBtGqQECUhpRSlGgVS99oFkdAmtn0bcXWOXV9lChoBmgJaA9DCF0XfnA+8nFAlIaUUpRoFU0NAWgWR0Ca2o4Wk8A8dX2UKGgGaAloD0MITz3S4LaKPUCUhpRSlGgVS9ZoFkdAmtznxjJ+2HV9lChoBmgJaA9DCGwhyEGJ6XBAlIaUUpRoFU1FAWgWR0Ca3X2QXAM2dX2UKGgGaAloD0MIUFYMV0fTckCUhpRSlGgVTS0BaBZHQJr8tFQVKwp1fZQoaAZoCWgPQwgKvmn6bKFxQJSGlFKUaBVNJQFoFkdAmv2t7KJVKnV9lChoBmgJaA9DCA7Y1eSpinBAlIaUUpRoFU0pAWgWR0Ca/oqZtvXLdX2UKGgGaAloD0MIcVRuohbqcUCUhpRSlGgVTU4BaBZHQJr/SqCHymR1fZQoaAZoCWgPQwi6awn5YPpxQJSGlFKUaBVNKgFoFkdAmv/o4lyBCnV9lChoBmgJaA9DCJ/Nqs/VXVNAlIaUUpRoFUv8aBZHQJsAKwA2hqV1fZQoaAZoCWgPQwhxxjAnaK1wQJSGlFKUaBVNGgFoFkdAmwA1O45LiHV9lChoBmgJaA9DCD1lNV2PoHFAlIaUUpRoFU1ZAWgWR0CbAFLyc0+DdX2UKGgGaAloD0MIkiVzLG9dcUCUhpRSlGgVTR0BaBZHQJsA/Ud7v5R1fZQoaAZoCWgPQwivBb03hmpgQJSGlFKUaBVN6ANoFkdAmwHZhWo3rHV9lChoBmgJaA9DCPZ698c7hHBAlIaUUpRoFU0VAWgWR0CbAjZMcp9adX2UKGgGaAloD0MIGXJsPUN6bUCUhpRSlGgVTSABaBZHQJsCW5rgwXZ1fZQoaAZoCWgPQwigppatdfNwQJSGlFKUaBVNFAFoFkdAmwK/eHi3onV9lChoBmgJaA9DCFX3yOaqK25AlIaUUpRoFU06AWgWR0CbBmAVfu1GdX2UKGgGaAloD0MIfnTqyqdYcUCUhpRSlGgVTS8BaBZHQJsGW2H+Idl1fZQoaAZoCWgPQwjHSPYIdUlyQJSGlFKUaBVNkwFoFkdAmwagiRnvlXV9lChoBmgJaA9DCBssnKT5oxrAlIaUUpRoFUvhaBZHQJsI5as6q811fZQoaAZoCWgPQwiUEReABiBxQJSGlFKUaBVNHwFoFkdAmwmvY4ACGXV9lChoBmgJaA9DCN8Vwf9WLXBAlIaUUpRoFU00AWgWR0CbCcWJJoTPdX2UKGgGaAloD0MIjxfS4WEackCUhpRSlGgVTToBaBZHQJsN33WWhRJ1fZQoaAZoCWgPQwjh0Fs8fAZzQJSGlFKUaBVNOgFoFkdAmw3r1yvLYHV9lChoBmgJaA9DCCGunL2zAXJAlIaUUpRoFU05AWgWR0CbDgMY/FBIdX2UKGgGaAloD0MI2c73U6PRcECUhpRSlGgVTRQBaBZHQJsOFnvlU6x1fZQoaAZoCWgPQwgOaOkKdgFxQJSGlFKUaBVNDAFoFkdAmw4z0+TvA3V9lChoBmgJaA9DCBoUzQPYG21AlIaUUpRoFU0CAWgWR0CbDoWyTpxFdX2UKGgGaAloD0MIzT6PUZ6YcECUhpRSlGgVTR8BaBZHQJsPR6rvLHN1fZQoaAZoCWgPQwgCZylZTqhyQJSGlFKUaBVNjAFoFkdAmxC6xgRbr3V9lChoBmgJaA9DCO5cGOlFkXFAlIaUUpRoFU2JAWgWR0CbEjPAfuCxdX2UKGgGaAloD0MIshGI13WkbUCUhpRSlGgVTRwBaBZHQJsTekHlfZ51fZQoaAZoCWgPQwj/rzpyJGdvQJSGlFKUaBVNHAFoFkdAmxN1c6eXiXV9lChoBmgJaA9DCPXWwFaJ2m5AlIaUUpRoFUv/aBZHQJsU0XrMTvl1fZQoaAZoCWgPQwgUCDvFal1yQJSGlFKUaBVNOgFoFkdAmxUL+Haew3V9lChoBmgJaA9DCHy6umNx6XBAlIaUUpRoFU0qAWgWR0CbF5YOlO45dX2UKGgGaAloD0MIqvBneLMEcECUhpRSlGgVTVsBaBZHQJsaYeyRjjJ1fZQoaAZoCWgPQwi0PA/ujh9wQJSGlFKUaBVNEQFoFkdAmxqeLR8c/HV9lChoBmgJaA9DCJ6VtOKbrm5AlIaUUpRoFU0aAWgWR0CbG1GEf1YhdX2UKGgGaAloD0MIBoNr7uiYcECUhpRSlGgVTSgBaBZHQJsb41DSgGt1fZQoaAZoCWgPQwjEYP4KGUFwQJSGlFKUaBVNJwFoFkdAmxwFQ/HHWHV9lChoBmgJaA9DCPDfvDhxeG9AlIaUUpRoFU0RAWgWR0CbHDDXvphXdX2UKGgGaAloD0MI4NVyZ6aRcECUhpRSlGgVTT8BaBZHQJsdMLgGbCt1fZQoaAZoCWgPQwgei21SkZxzQJSGlFKUaBVNIgFoFkdAmx5hdQfp2XV9lChoBmgJaA9DCHukwW1tAW5AlIaUUpRoFU0HAWgWR0CbHrvLX+VDdX2UKGgGaAloD0MIUd1c/K0RcUCUhpRSlGgVTQcBaBZHQJshpKFqSHN1fZQoaAZoCWgPQwgmqrcGNttwQJSGlFKUaBVNOQFoFkdAmyJN7WuoxnV9lChoBmgJaA9DCCo5J/YQ+nJAlIaUUpRoFU1IAWgWR0CbIwSPluFYdX2UKGgGaAloD0MIJzCd1u2PcECUhpRSlGgVTSsBaBZHQJsjF4IKMNt1fZQoaAZoCWgPQwgMPPce7jRwQJSGlFKUaBVNGQFoFkdAmyh3Roh6jXV9lChoBmgJaA9DCDp4JjRJzHJAlIaUUpRoFU1eAWgWR0CbKKdbxEv1dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2phc3Blci8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9qYXNwZXIvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96670652201adb2a5e5b37341fe89a54e322d4796a92c209ceb7c2a0b9e1d5dd
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74938165b83c78202b4df5c68086b2a663f2b9edcda4d6a264974a4ac0e7c35d
3
+ size 43073
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.0-57-generic-x86_64-with-glibc2.35 #63-Ubuntu SMP Thu Nov 24 13:43:17 UTC 2022
2
+ Python: 3.10.6
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: False
6
+ Numpy: 1.23.4
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (237 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.58565483680786, "std_reward": 14.311046460201238, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-06T17:38:51.419641"}