Jasontth commited on
Commit
bce1e56
·
1 Parent(s): 9577e68

climate_verfication_model

Browse files
Files changed (3) hide show
  1. README.md +182 -146
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -5,8 +5,6 @@ tags:
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
8
- - precision
9
- - recall
10
  - f1
11
  model-index:
12
  - name: results
@@ -20,11 +18,9 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.7998
24
- - Accuracy: 0.7023
25
- - Precision: 0.7144
26
- - Recall: 0.7023
27
- - F1: 0.7065
28
 
29
  ## Model description
30
 
@@ -43,154 +39,194 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5e-05
47
  - train_batch_size: 16
48
- - eval_batch_size: 16
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - lr_scheduler_warmup_steps: 500
53
- - num_epochs: 5
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
59
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
60
- | 1.0859 | 0.04 | 10 | 1.0722 | 0.6493 | 0.6735 | 0.6493 | 0.5118 |
61
- | 1.0731 | 0.07 | 20 | 1.0562 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
62
- | 1.0456 | 0.11 | 30 | 1.0316 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
63
- | 1.0199 | 0.15 | 40 | 0.9979 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
64
- | 0.9613 | 0.19 | 50 | 0.9362 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
65
- | 0.8949 | 0.22 | 60 | 0.8645 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
66
- | 0.9151 | 0.26 | 70 | 0.8606 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
67
- | 0.8583 | 0.3 | 80 | 0.8593 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
68
- | 0.9604 | 0.33 | 90 | 0.8539 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
69
- | 0.7919 | 0.37 | 100 | 0.8504 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
70
- | 0.9365 | 0.41 | 110 | 0.8520 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
71
- | 0.9285 | 0.45 | 120 | 0.8521 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
72
- | 0.8564 | 0.48 | 130 | 0.8615 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
73
- | 0.8132 | 0.52 | 140 | 0.8583 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
74
- | 0.8911 | 0.56 | 150 | 0.8467 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
75
- | 0.8383 | 0.59 | 160 | 0.8373 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
76
- | 0.8387 | 0.63 | 170 | 0.8372 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
77
- | 0.979 | 0.67 | 180 | 0.8595 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
78
- | 0.7621 | 0.71 | 190 | 0.8642 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
79
- | 0.8367 | 0.74 | 200 | 0.8276 | 0.6553 | 0.6447 | 0.6553 | 0.5271 |
80
- | 0.9116 | 0.78 | 210 | 0.8466 | 0.6493 | 0.6735 | 0.6493 | 0.5118 |
81
- | 0.8444 | 0.82 | 220 | 0.8171 | 0.6504 | 0.6740 | 0.6504 | 0.5143 |
82
- | 0.7815 | 0.86 | 230 | 0.7919 | 0.6667 | 0.6008 | 0.6667 | 0.5615 |
83
- | 0.8592 | 0.89 | 240 | 0.7907 | 0.6732 | 0.5878 | 0.6732 | 0.5962 |
84
- | 0.8933 | 0.93 | 250 | 0.7963 | 0.6813 | 0.6004 | 0.6813 | 0.6102 |
85
- | 0.8409 | 0.97 | 260 | 0.7812 | 0.6797 | 0.6021 | 0.6797 | 0.6066 |
86
- | 0.8285 | 1.0 | 270 | 0.7794 | 0.6737 | 0.5987 | 0.6737 | 0.5940 |
87
- | 0.7895 | 1.04 | 280 | 0.7893 | 0.6846 | 0.6044 | 0.6846 | 0.6168 |
88
- | 0.8012 | 1.08 | 290 | 0.7617 | 0.6813 | 0.6129 | 0.6813 | 0.6002 |
89
- | 0.7215 | 1.12 | 300 | 0.8029 | 0.6748 | 0.6248 | 0.6748 | 0.5764 |
90
- | 0.8134 | 1.15 | 310 | 0.8294 | 0.6781 | 0.5949 | 0.6781 | 0.6294 |
91
- | 0.7247 | 1.19 | 320 | 0.7944 | 0.6732 | 0.5941 | 0.6732 | 0.6290 |
92
- | 0.8043 | 1.23 | 330 | 0.7978 | 0.6656 | 0.5931 | 0.6656 | 0.6268 |
93
- | 0.7647 | 1.26 | 340 | 0.7571 | 0.6884 | 0.6344 | 0.6884 | 0.6063 |
94
- | 0.7807 | 1.3 | 350 | 0.7958 | 0.6412 | 0.6041 | 0.6412 | 0.6167 |
95
- | 0.8031 | 1.34 | 360 | 0.7261 | 0.6906 | 0.6820 | 0.6906 | 0.6680 |
96
- | 0.6965 | 1.38 | 370 | 0.7287 | 0.7003 | 0.6796 | 0.7003 | 0.6813 |
97
- | 0.69 | 1.41 | 380 | 0.7115 | 0.7074 | 0.6981 | 0.7074 | 0.6581 |
98
- | 0.7015 | 1.45 | 390 | 0.7391 | 0.7063 | 0.6932 | 0.7063 | 0.6813 |
99
- | 0.7461 | 1.49 | 400 | 0.7624 | 0.6987 | 0.6791 | 0.6987 | 0.6787 |
100
- | 0.758 | 1.52 | 410 | 0.7778 | 0.6819 | 0.6893 | 0.6819 | 0.6695 |
101
- | 0.7617 | 1.56 | 420 | 0.7913 | 0.6878 | 0.6906 | 0.6878 | 0.6339 |
102
- | 0.7848 | 1.6 | 430 | 0.7785 | 0.6629 | 0.6806 | 0.6629 | 0.6643 |
103
- | 0.8138 | 1.64 | 440 | 0.7191 | 0.6954 | 0.6763 | 0.6954 | 0.6474 |
104
- | 0.7451 | 1.67 | 450 | 0.7086 | 0.7030 | 0.7061 | 0.7030 | 0.6434 |
105
- | 0.788 | 1.71 | 460 | 0.7202 | 0.6840 | 0.6956 | 0.6840 | 0.6497 |
106
- | 0.7107 | 1.75 | 470 | 0.7543 | 0.6835 | 0.6067 | 0.6835 | 0.6379 |
107
- | 0.7047 | 1.78 | 480 | 0.7940 | 0.6862 | 0.6697 | 0.6862 | 0.6258 |
108
- | 0.8561 | 1.82 | 490 | 0.7497 | 0.6802 | 0.6860 | 0.6802 | 0.6666 |
109
- | 0.804 | 1.86 | 500 | 0.7247 | 0.6938 | 0.6757 | 0.6938 | 0.6555 |
110
- | 0.7796 | 1.9 | 510 | 0.7239 | 0.7063 | 0.6988 | 0.7063 | 0.6702 |
111
- | 0.8124 | 1.93 | 520 | 0.7693 | 0.6976 | 0.7003 | 0.6976 | 0.6621 |
112
- | 0.7306 | 1.97 | 530 | 0.8395 | 0.6363 | 0.6788 | 0.6363 | 0.6329 |
113
- | 0.7079 | 2.01 | 540 | 0.7051 | 0.7041 | 0.6828 | 0.7041 | 0.6811 |
114
- | 0.6018 | 2.04 | 550 | 0.7327 | 0.7058 | 0.6873 | 0.7058 | 0.6849 |
115
- | 0.5824 | 2.08 | 560 | 0.7819 | 0.6743 | 0.6811 | 0.6743 | 0.6774 |
116
- | 0.6001 | 2.12 | 570 | 0.7547 | 0.7139 | 0.6980 | 0.7139 | 0.7023 |
117
- | 0.6471 | 2.16 | 580 | 0.7617 | 0.7172 | 0.7040 | 0.7172 | 0.6848 |
118
- | 0.6226 | 2.19 | 590 | 0.7421 | 0.6927 | 0.6974 | 0.6927 | 0.6909 |
119
- | 0.5203 | 2.23 | 600 | 0.7935 | 0.6694 | 0.6871 | 0.6694 | 0.6748 |
120
- | 0.6445 | 2.27 | 610 | 0.7722 | 0.7182 | 0.7038 | 0.7182 | 0.6947 |
121
- | 0.7027 | 2.3 | 620 | 0.7517 | 0.6754 | 0.7039 | 0.6754 | 0.6814 |
122
- | 0.5662 | 2.34 | 630 | 0.6804 | 0.7182 | 0.7069 | 0.7182 | 0.7090 |
123
- | 0.6304 | 2.38 | 640 | 0.6965 | 0.7128 | 0.6958 | 0.7128 | 0.6904 |
124
- | 0.6258 | 2.42 | 650 | 0.7053 | 0.7041 | 0.7041 | 0.7041 | 0.7041 |
125
- | 0.4966 | 2.45 | 660 | 0.7300 | 0.7177 | 0.7030 | 0.7177 | 0.7033 |
126
- | 0.5721 | 2.49 | 670 | 0.8330 | 0.6683 | 0.6910 | 0.6683 | 0.6737 |
127
- | 0.5507 | 2.53 | 680 | 0.8154 | 0.6857 | 0.7020 | 0.6857 | 0.6923 |
128
- | 0.6392 | 2.57 | 690 | 0.8048 | 0.7166 | 0.7079 | 0.7166 | 0.6814 |
129
- | 0.6128 | 2.6 | 700 | 0.7445 | 0.6786 | 0.6890 | 0.6786 | 0.6827 |
130
- | 0.622 | 2.64 | 710 | 0.7029 | 0.7047 | 0.6895 | 0.7047 | 0.6870 |
131
- | 0.5847 | 2.68 | 720 | 0.7911 | 0.6569 | 0.6889 | 0.6569 | 0.6677 |
132
- | 0.6454 | 2.71 | 730 | 0.7062 | 0.7112 | 0.7017 | 0.7112 | 0.6797 |
133
- | 0.5264 | 2.75 | 740 | 0.7419 | 0.6992 | 0.6893 | 0.6992 | 0.6870 |
134
- | 0.649 | 2.79 | 750 | 0.7243 | 0.7063 | 0.7009 | 0.7063 | 0.7030 |
135
- | 0.5343 | 2.83 | 760 | 0.7478 | 0.6889 | 0.7030 | 0.6889 | 0.6946 |
136
- | 0.5335 | 2.86 | 770 | 0.7222 | 0.7237 | 0.7115 | 0.7237 | 0.7052 |
137
- | 0.5228 | 2.9 | 780 | 0.7182 | 0.7226 | 0.7152 | 0.7226 | 0.7063 |
138
- | 0.5605 | 2.94 | 790 | 0.7195 | 0.7210 | 0.7128 | 0.7210 | 0.7106 |
139
- | 0.627 | 2.97 | 800 | 0.7559 | 0.6878 | 0.7135 | 0.6878 | 0.6933 |
140
- | 0.6536 | 3.01 | 810 | 0.6616 | 0.7275 | 0.7141 | 0.7275 | 0.7105 |
141
- | 0.4106 | 3.05 | 820 | 0.7176 | 0.7307 | 0.7209 | 0.7307 | 0.7230 |
142
- | 0.3588 | 3.09 | 830 | 0.8387 | 0.7226 | 0.7230 | 0.7226 | 0.7183 |
143
- | 0.404 | 3.12 | 840 | 0.8459 | 0.7117 | 0.7138 | 0.7117 | 0.7124 |
144
- | 0.4313 | 3.16 | 850 | 0.8406 | 0.6992 | 0.7108 | 0.6992 | 0.7036 |
145
- | 0.3407 | 3.2 | 860 | 0.8317 | 0.6916 | 0.7133 | 0.6916 | 0.6997 |
146
- | 0.365 | 3.23 | 870 | 0.8310 | 0.6992 | 0.7110 | 0.6992 | 0.7035 |
147
- | 0.3776 | 3.27 | 880 | 0.8376 | 0.6927 | 0.7107 | 0.6927 | 0.6986 |
148
- | 0.3442 | 3.31 | 890 | 0.8554 | 0.7079 | 0.7082 | 0.7079 | 0.7079 |
149
- | 0.41 | 3.35 | 900 | 0.9473 | 0.6401 | 0.7039 | 0.6401 | 0.6550 |
150
- | 0.4649 | 3.38 | 910 | 0.8139 | 0.7134 | 0.7063 | 0.7134 | 0.7090 |
151
- | 0.4359 | 3.42 | 920 | 0.8275 | 0.6992 | 0.7095 | 0.6992 | 0.7022 |
152
- | 0.2906 | 3.46 | 930 | 0.8398 | 0.7096 | 0.7013 | 0.7096 | 0.7025 |
153
- | 0.413 | 3.49 | 940 | 0.8558 | 0.6982 | 0.7049 | 0.6982 | 0.7009 |
154
- | 0.3936 | 3.53 | 950 | 0.8457 | 0.7025 | 0.7058 | 0.7025 | 0.7039 |
155
- | 0.3691 | 3.57 | 960 | 0.8312 | 0.7014 | 0.7102 | 0.7014 | 0.7050 |
156
- | 0.3747 | 3.61 | 970 | 0.8146 | 0.7210 | 0.7074 | 0.7210 | 0.7086 |
157
- | 0.4037 | 3.64 | 980 | 0.7906 | 0.7199 | 0.7132 | 0.7199 | 0.7150 |
158
- | 0.4112 | 3.68 | 990 | 0.8135 | 0.7139 | 0.7145 | 0.7139 | 0.7137 |
159
- | 0.3685 | 3.72 | 1000 | 0.8024 | 0.7106 | 0.7144 | 0.7106 | 0.7123 |
160
- | 0.3881 | 3.75 | 1010 | 0.8339 | 0.7063 | 0.7109 | 0.7063 | 0.7063 |
161
- | 0.4168 | 3.79 | 1020 | 0.8261 | 0.7231 | 0.7191 | 0.7231 | 0.7206 |
162
- | 0.3591 | 3.83 | 1030 | 0.8014 | 0.7340 | 0.7258 | 0.7340 | 0.7281 |
163
- | 0.3632 | 3.87 | 1040 | 0.8568 | 0.6878 | 0.7206 | 0.6878 | 0.6974 |
164
- | 0.259 | 3.9 | 1050 | 0.8182 | 0.7324 | 0.7226 | 0.7324 | 0.7225 |
165
- | 0.3741 | 3.94 | 1060 | 0.8511 | 0.7009 | 0.7200 | 0.7009 | 0.7078 |
166
- | 0.3551 | 3.98 | 1070 | 0.8283 | 0.7150 | 0.7186 | 0.7150 | 0.7159 |
167
- | 0.4105 | 4.01 | 1080 | 0.7817 | 0.7204 | 0.7209 | 0.7204 | 0.7205 |
168
- | 0.2411 | 4.05 | 1090 | 0.8384 | 0.7372 | 0.7272 | 0.7372 | 0.7274 |
169
- | 0.2166 | 4.09 | 1100 | 0.9466 | 0.7003 | 0.7240 | 0.7003 | 0.7066 |
170
- | 0.4075 | 4.13 | 1110 | 0.9255 | 0.6976 | 0.7157 | 0.6976 | 0.7042 |
171
- | 0.3328 | 4.16 | 1120 | 0.9120 | 0.6922 | 0.7153 | 0.6922 | 0.7003 |
172
- | 0.1584 | 4.2 | 1130 | 0.9688 | 0.6857 | 0.7100 | 0.6857 | 0.6942 |
173
- | 0.1737 | 4.24 | 1140 | 1.0205 | 0.7356 | 0.7267 | 0.7356 | 0.7289 |
174
- | 0.2335 | 4.28 | 1150 | 1.0734 | 0.7068 | 0.7194 | 0.7068 | 0.7116 |
175
- | 0.2179 | 4.31 | 1160 | 1.0748 | 0.7085 | 0.7190 | 0.7085 | 0.7127 |
176
- | 0.244 | 4.35 | 1170 | 1.0801 | 0.7030 | 0.7220 | 0.7030 | 0.7097 |
177
- | 0.2151 | 4.39 | 1180 | 1.0332 | 0.7112 | 0.7176 | 0.7112 | 0.7140 |
178
- | 0.2602 | 4.42 | 1190 | 1.0343 | 0.7134 | 0.7181 | 0.7134 | 0.7154 |
179
- | 0.131 | 4.46 | 1200 | 1.0453 | 0.7128 | 0.7175 | 0.7128 | 0.7149 |
180
- | 0.1966 | 4.5 | 1210 | 1.0673 | 0.7096 | 0.7160 | 0.7096 | 0.7121 |
181
- | 0.2136 | 4.54 | 1220 | 1.0550 | 0.7166 | 0.7157 | 0.7166 | 0.7158 |
182
- | 0.1625 | 4.57 | 1230 | 1.0690 | 0.7172 | 0.7148 | 0.7172 | 0.7156 |
183
- | 0.2199 | 4.61 | 1240 | 1.0908 | 0.7112 | 0.7182 | 0.7112 | 0.7141 |
184
- | 0.2028 | 4.65 | 1250 | 1.0991 | 0.7085 | 0.7200 | 0.7085 | 0.7130 |
185
- | 0.2669 | 4.68 | 1260 | 1.0944 | 0.7134 | 0.7205 | 0.7134 | 0.7163 |
186
- | 0.1408 | 4.72 | 1270 | 1.0827 | 0.7248 | 0.7198 | 0.7248 | 0.7215 |
187
- | 0.2649 | 4.76 | 1280 | 1.0974 | 0.7199 | 0.7182 | 0.7199 | 0.7187 |
188
- | 0.1512 | 4.8 | 1290 | 1.1159 | 0.7220 | 0.7212 | 0.7220 | 0.7214 |
189
- | 0.1962 | 4.83 | 1300 | 1.1374 | 0.7161 | 0.7206 | 0.7161 | 0.7180 |
190
- | 0.2322 | 4.87 | 1310 | 1.1435 | 0.7144 | 0.7226 | 0.7144 | 0.7178 |
191
- | 0.2095 | 4.91 | 1320 | 1.1408 | 0.7106 | 0.7220 | 0.7106 | 0.7151 |
192
- | 0.1534 | 4.94 | 1330 | 1.1466 | 0.7123 | 0.7248 | 0.7123 | 0.7170 |
193
- | 0.2505 | 4.98 | 1340 | 1.1481 | 0.7123 | 0.7248 | 0.7123 | 0.7170 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
 
195
 
196
  ### Framework versions
 
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
 
 
8
  - f1
9
  model-index:
10
  - name: results
 
18
 
19
  This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.6970
22
+ - Accuracy: 0.7288
23
+ - F1: 0.7229
 
 
24
 
25
  ## Model description
26
 
 
39
  ### Training hyperparameters
40
 
41
  The following hyperparameters were used during training:
42
+ - learning_rate: 1e-05
43
  - train_batch_size: 16
44
+ - eval_batch_size: 32
45
  - seed: 42
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 10
50
  - mixed_precision_training: Native AMP
51
 
52
  ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
56
+ | 1.108 | 0.02 | 10 | 1.1080 | 0.2174 | 0.1291 |
57
+ | 1.1078 | 0.05 | 20 | 1.1070 | 0.2214 | 0.1295 |
58
+ | 1.1054 | 0.07 | 30 | 1.1045 | 0.2409 | 0.1356 |
59
+ | 1.1127 | 0.1 | 40 | 1.0994 | 0.3112 | 0.2653 |
60
+ | 1.0924 | 0.12 | 50 | 1.0923 | 0.5664 | 0.5046 |
61
+ | 1.0844 | 0.15 | 60 | 1.0841 | 0.6120 | 0.4647 |
62
+ | 1.074 | 0.17 | 70 | 1.0756 | 0.6120 | 0.4647 |
63
+ | 1.0725 | 0.19 | 80 | 1.0660 | 0.6120 | 0.4647 |
64
+ | 1.0546 | 0.22 | 90 | 1.0541 | 0.6120 | 0.4647 |
65
+ | 1.0407 | 0.24 | 100 | 1.0401 | 0.6120 | 0.4647 |
66
+ | 1.0107 | 0.27 | 110 | 1.0227 | 0.6120 | 0.4647 |
67
+ | 1.0217 | 0.29 | 120 | 1.0030 | 0.6120 | 0.4647 |
68
+ | 0.9785 | 0.32 | 130 | 0.9774 | 0.6120 | 0.4647 |
69
+ | 1.0076 | 0.34 | 140 | 0.9498 | 0.6120 | 0.4647 |
70
+ | 0.9475 | 0.36 | 150 | 0.9313 | 0.6120 | 0.4647 |
71
+ | 0.8933 | 0.39 | 160 | 0.9104 | 0.6120 | 0.4647 |
72
+ | 1.0152 | 0.41 | 170 | 0.9052 | 0.6120 | 0.4647 |
73
+ | 1.0132 | 0.44 | 180 | 0.9086 | 0.6120 | 0.4647 |
74
+ | 0.9295 | 0.46 | 190 | 0.9178 | 0.6120 | 0.4647 |
75
+ | 0.9264 | 0.49 | 200 | 0.9104 | 0.6120 | 0.4647 |
76
+ | 0.9901 | 0.51 | 210 | 0.9087 | 0.6120 | 0.4647 |
77
+ | 0.9287 | 0.53 | 220 | 0.9140 | 0.6120 | 0.4647 |
78
+ | 0.9729 | 0.56 | 230 | 0.9108 | 0.6120 | 0.4647 |
79
+ | 1.0134 | 0.58 | 240 | 0.9184 | 0.6120 | 0.4647 |
80
+ | 0.9293 | 0.61 | 250 | 0.9016 | 0.6120 | 0.4647 |
81
+ | 0.9546 | 0.63 | 260 | 0.8928 | 0.6120 | 0.4647 |
82
+ | 0.9028 | 0.66 | 270 | 0.8910 | 0.6120 | 0.4647 |
83
+ | 0.8572 | 0.68 | 280 | 0.8872 | 0.6120 | 0.4647 |
84
+ | 0.9085 | 0.7 | 290 | 0.8813 | 0.6120 | 0.4647 |
85
+ | 0.9711 | 0.73 | 300 | 0.8845 | 0.6120 | 0.4647 |
86
+ | 0.8595 | 0.75 | 310 | 0.8768 | 0.6120 | 0.4647 |
87
+ | 0.8392 | 0.78 | 320 | 0.8635 | 0.6120 | 0.4647 |
88
+ | 0.8645 | 0.8 | 330 | 0.8700 | 0.6120 | 0.4647 |
89
+ | 0.886 | 0.83 | 340 | 0.8746 | 0.6120 | 0.4647 |
90
+ | 0.9011 | 0.85 | 350 | 0.8624 | 0.6120 | 0.4647 |
91
+ | 0.866 | 0.87 | 360 | 0.8375 | 0.6120 | 0.4647 |
92
+ | 0.9093 | 0.9 | 370 | 0.8616 | 0.6120 | 0.4647 |
93
+ | 0.8792 | 0.92 | 380 | 0.8254 | 0.6120 | 0.4647 |
94
+ | 0.7503 | 0.95 | 390 | 0.8279 | 0.6120 | 0.4647 |
95
+ | 0.8007 | 0.97 | 400 | 0.8319 | 0.6120 | 0.4647 |
96
+ | 0.9182 | 1.0 | 410 | 0.8737 | 0.6120 | 0.4647 |
97
+ | 0.89 | 1.02 | 420 | 0.8689 | 0.6120 | 0.4647 |
98
+ | 0.8556 | 1.04 | 430 | 0.8321 | 0.6185 | 0.4917 |
99
+ | 0.8988 | 1.07 | 440 | 0.8146 | 0.6263 | 0.4981 |
100
+ | 0.8161 | 1.09 | 450 | 0.8289 | 0.6159 | 0.4735 |
101
+ | 0.8428 | 1.12 | 460 | 0.8441 | 0.6237 | 0.4908 |
102
+ | 0.8503 | 1.14 | 470 | 0.8284 | 0.6562 | 0.6118 |
103
+ | 0.7648 | 1.17 | 480 | 0.8277 | 0.6224 | 0.5989 |
104
+ | 0.8573 | 1.19 | 490 | 0.8402 | 0.6328 | 0.5723 |
105
+ | 0.7526 | 1.21 | 500 | 0.8147 | 0.6367 | 0.6037 |
106
+ | 0.8221 | 1.24 | 510 | 0.8205 | 0.6276 | 0.5986 |
107
+ | 0.83 | 1.26 | 520 | 0.7885 | 0.6471 | 0.5935 |
108
+ | 0.7811 | 1.29 | 530 | 0.7936 | 0.6497 | 0.6471 |
109
+ | 0.7587 | 1.31 | 540 | 0.7992 | 0.6510 | 0.6003 |
110
+ | 0.7823 | 1.33 | 550 | 0.7637 | 0.6589 | 0.6498 |
111
+ | 0.806 | 1.36 | 560 | 0.7986 | 0.6510 | 0.5994 |
112
+ | 0.6892 | 1.38 | 570 | 0.7657 | 0.6576 | 0.6338 |
113
+ | 0.7004 | 1.41 | 580 | 0.7759 | 0.6628 | 0.6604 |
114
+ | 0.76 | 1.43 | 590 | 0.7915 | 0.6497 | 0.6319 |
115
+ | 0.7296 | 1.46 | 600 | 0.7696 | 0.6536 | 0.6543 |
116
+ | 0.7777 | 1.48 | 610 | 0.7408 | 0.6615 | 0.6516 |
117
+ | 0.689 | 1.5 | 620 | 0.7559 | 0.6732 | 0.6359 |
118
+ | 0.7462 | 1.53 | 630 | 0.7471 | 0.6641 | 0.6622 |
119
+ | 0.7586 | 1.55 | 640 | 0.7719 | 0.6602 | 0.6484 |
120
+ | 0.7149 | 1.58 | 650 | 0.7450 | 0.6615 | 0.6556 |
121
+ | 0.7634 | 1.6 | 660 | 0.7440 | 0.6615 | 0.6499 |
122
+ | 0.6967 | 1.63 | 670 | 0.7679 | 0.6615 | 0.6295 |
123
+ | 0.8081 | 1.65 | 680 | 0.7868 | 0.6497 | 0.6525 |
124
+ | 0.7743 | 1.67 | 690 | 0.7756 | 0.6471 | 0.6513 |
125
+ | 0.6511 | 1.7 | 700 | 0.7339 | 0.6966 | 0.6700 |
126
+ | 0.7563 | 1.72 | 710 | 0.8288 | 0.6107 | 0.6282 |
127
+ | 0.7533 | 1.75 | 720 | 0.7225 | 0.6784 | 0.6716 |
128
+ | 0.6474 | 1.77 | 730 | 0.7119 | 0.7070 | 0.6915 |
129
+ | 0.6677 | 1.8 | 740 | 0.7168 | 0.6992 | 0.6879 |
130
+ | 0.6215 | 1.82 | 750 | 0.7381 | 0.6823 | 0.6725 |
131
+ | 0.7862 | 1.84 | 760 | 0.8190 | 0.6380 | 0.6555 |
132
+ | 0.661 | 1.87 | 770 | 0.7201 | 0.6953 | 0.6803 |
133
+ | 0.6256 | 1.89 | 780 | 0.7576 | 0.6732 | 0.6558 |
134
+ | 0.7411 | 1.92 | 790 | 0.8308 | 0.6263 | 0.6354 |
135
+ | 0.5917 | 1.94 | 800 | 0.7480 | 0.6875 | 0.6627 |
136
+ | 0.7315 | 1.97 | 810 | 0.7350 | 0.6862 | 0.6777 |
137
+ | 0.7161 | 1.99 | 820 | 0.7271 | 0.6862 | 0.6789 |
138
+ | 0.6705 | 2.01 | 830 | 0.7650 | 0.6888 | 0.6583 |
139
+ | 0.6363 | 2.04 | 840 | 0.7582 | 0.6602 | 0.6668 |
140
+ | 0.5478 | 2.06 | 850 | 0.7336 | 0.6875 | 0.6760 |
141
+ | 0.5762 | 2.09 | 860 | 0.7453 | 0.6797 | 0.6756 |
142
+ | 0.5043 | 2.11 | 870 | 0.7730 | 0.6706 | 0.6751 |
143
+ | 0.6707 | 2.14 | 880 | 0.7607 | 0.6797 | 0.6795 |
144
+ | 0.6797 | 2.16 | 890 | 0.7392 | 0.6966 | 0.6903 |
145
+ | 0.5108 | 2.18 | 900 | 0.7410 | 0.6992 | 0.6777 |
146
+ | 0.6752 | 2.21 | 910 | 0.7795 | 0.6641 | 0.6701 |
147
+ | 0.5653 | 2.23 | 920 | 0.7427 | 0.6927 | 0.6897 |
148
+ | 0.4893 | 2.26 | 930 | 0.7870 | 0.6719 | 0.6800 |
149
+ | 0.6131 | 2.28 | 940 | 0.7231 | 0.6992 | 0.6908 |
150
+ | 0.5764 | 2.31 | 950 | 0.7240 | 0.6784 | 0.6764 |
151
+ | 0.5644 | 2.33 | 960 | 0.7325 | 0.6758 | 0.6808 |
152
+ | 0.5864 | 2.35 | 970 | 0.7196 | 0.7083 | 0.7077 |
153
+ | 0.5273 | 2.38 | 980 | 0.7491 | 0.6979 | 0.7000 |
154
+ | 0.5442 | 2.4 | 990 | 0.7273 | 0.6979 | 0.6962 |
155
+ | 0.5273 | 2.43 | 1000 | 0.7619 | 0.6940 | 0.6971 |
156
+ | 0.5559 | 2.45 | 1010 | 0.7602 | 0.6927 | 0.6759 |
157
+ | 0.5739 | 2.48 | 1020 | 0.8416 | 0.6510 | 0.6620 |
158
+ | 0.6714 | 2.5 | 1030 | 0.7206 | 0.6901 | 0.6833 |
159
+ | 0.4798 | 2.52 | 1040 | 0.7417 | 0.6966 | 0.6967 |
160
+ | 0.5155 | 2.55 | 1050 | 0.7524 | 0.6836 | 0.6756 |
161
+ | 0.665 | 2.57 | 1060 | 0.7805 | 0.6836 | 0.6851 |
162
+ | 0.5047 | 2.6 | 1070 | 0.7259 | 0.7005 | 0.6911 |
163
+ | 0.4928 | 2.62 | 1080 | 0.7296 | 0.7070 | 0.6989 |
164
+ | 0.6354 | 2.65 | 1090 | 0.7149 | 0.7057 | 0.6942 |
165
+ | 0.5179 | 2.67 | 1100 | 0.7392 | 0.7005 | 0.7025 |
166
+ | 0.565 | 2.69 | 1110 | 0.9225 | 0.6211 | 0.6397 |
167
+ | 0.568 | 2.72 | 1120 | 0.7576 | 0.6927 | 0.6620 |
168
+ | 0.6313 | 2.74 | 1130 | 0.7672 | 0.6823 | 0.6870 |
169
+ | 0.5991 | 2.77 | 1140 | 0.7014 | 0.6953 | 0.6949 |
170
+ | 0.5064 | 2.79 | 1150 | 0.6919 | 0.7201 | 0.7108 |
171
+ | 0.5132 | 2.82 | 1160 | 0.7176 | 0.7109 | 0.7122 |
172
+ | 0.4623 | 2.84 | 1170 | 0.7508 | 0.7083 | 0.7116 |
173
+ | 0.5912 | 2.86 | 1180 | 0.6912 | 0.7188 | 0.7097 |
174
+ | 0.6299 | 2.89 | 1190 | 0.6937 | 0.7214 | 0.7108 |
175
+ | 0.526 | 2.91 | 1200 | 0.8388 | 0.6680 | 0.6729 |
176
+ | 0.6121 | 2.94 | 1210 | 0.7092 | 0.7227 | 0.7078 |
177
+ | 0.505 | 2.96 | 1220 | 0.7108 | 0.7057 | 0.7069 |
178
+ | 0.5917 | 2.99 | 1230 | 0.7166 | 0.6992 | 0.6991 |
179
+ | 0.4392 | 3.01 | 1240 | 0.7017 | 0.7135 | 0.7125 |
180
+ | 0.3661 | 3.03 | 1250 | 0.7366 | 0.7148 | 0.7077 |
181
+ | 0.4179 | 3.06 | 1260 | 0.7762 | 0.7135 | 0.7123 |
182
+ | 0.5012 | 3.08 | 1270 | 0.7817 | 0.6901 | 0.6943 |
183
+ | 0.455 | 3.11 | 1280 | 0.7387 | 0.7031 | 0.7018 |
184
+ | 0.45 | 3.13 | 1290 | 0.7666 | 0.6849 | 0.6895 |
185
+ | 0.3803 | 3.16 | 1300 | 0.7289 | 0.7057 | 0.7055 |
186
+ | 0.3249 | 3.18 | 1310 | 0.7702 | 0.7057 | 0.7057 |
187
+ | 0.4053 | 3.2 | 1320 | 0.8736 | 0.6693 | 0.6762 |
188
+ | 0.6543 | 3.23 | 1330 | 0.7545 | 0.7083 | 0.7046 |
189
+ | 0.5145 | 3.25 | 1340 | 0.7623 | 0.7044 | 0.7065 |
190
+ | 0.4317 | 3.28 | 1350 | 0.7426 | 0.7096 | 0.7085 |
191
+ | 0.3173 | 3.3 | 1360 | 0.7538 | 0.7201 | 0.7088 |
192
+ | 0.3904 | 3.33 | 1370 | 0.7851 | 0.6966 | 0.7013 |
193
+ | 0.4739 | 3.35 | 1380 | 0.7529 | 0.7096 | 0.7090 |
194
+ | 0.3597 | 3.37 | 1390 | 0.7475 | 0.7135 | 0.7049 |
195
+ | 0.5589 | 3.4 | 1400 | 0.7390 | 0.7057 | 0.7068 |
196
+ | 0.4127 | 3.42 | 1410 | 0.7603 | 0.6992 | 0.7039 |
197
+ | 0.4193 | 3.45 | 1420 | 0.7565 | 0.7031 | 0.6982 |
198
+ | 0.4774 | 3.47 | 1430 | 0.7831 | 0.6966 | 0.6999 |
199
+ | 0.5156 | 3.5 | 1440 | 0.8372 | 0.6875 | 0.6948 |
200
+ | 0.4646 | 3.52 | 1450 | 0.7770 | 0.7083 | 0.7079 |
201
+ | 0.4435 | 3.54 | 1460 | 0.8211 | 0.6914 | 0.6981 |
202
+ | 0.4664 | 3.57 | 1470 | 0.7730 | 0.7109 | 0.7116 |
203
+ | 0.4468 | 3.59 | 1480 | 0.7884 | 0.6966 | 0.6972 |
204
+ | 0.4693 | 3.62 | 1490 | 0.7881 | 0.7018 | 0.7049 |
205
+ | 0.4677 | 3.64 | 1500 | 0.7521 | 0.7018 | 0.6935 |
206
+ | 0.3911 | 3.67 | 1510 | 0.8343 | 0.6693 | 0.6750 |
207
+ | 0.4981 | 3.69 | 1520 | 0.7461 | 0.7057 | 0.7003 |
208
+ | 0.432 | 3.71 | 1530 | 0.7555 | 0.7227 | 0.7085 |
209
+ | 0.5283 | 3.74 | 1540 | 0.8265 | 0.6497 | 0.6596 |
210
+ | 0.4641 | 3.76 | 1550 | 0.7541 | 0.7005 | 0.6920 |
211
+ | 0.42 | 3.79 | 1560 | 0.7664 | 0.6979 | 0.6916 |
212
+ | 0.6015 | 3.81 | 1570 | 0.8471 | 0.6484 | 0.6541 |
213
+ | 0.5301 | 3.83 | 1580 | 0.7240 | 0.6979 | 0.6946 |
214
+ | 0.4583 | 3.86 | 1590 | 0.7755 | 0.6888 | 0.6921 |
215
+ | 0.5194 | 3.88 | 1600 | 0.7334 | 0.7122 | 0.7088 |
216
+ | 0.3624 | 3.91 | 1610 | 0.7659 | 0.6940 | 0.6951 |
217
+ | 0.543 | 3.93 | 1620 | 0.7718 | 0.6992 | 0.7027 |
218
+ | 0.3838 | 3.96 | 1630 | 0.7798 | 0.6940 | 0.6994 |
219
+ | 0.4389 | 3.98 | 1640 | 0.7479 | 0.7201 | 0.7159 |
220
+ | 0.3009 | 4.0 | 1650 | 0.7924 | 0.7031 | 0.7035 |
221
+ | 0.3812 | 4.03 | 1660 | 0.8021 | 0.7201 | 0.7186 |
222
+ | 0.3271 | 4.05 | 1670 | 0.8095 | 0.7188 | 0.7180 |
223
+ | 0.2551 | 4.08 | 1680 | 0.8355 | 0.7083 | 0.7107 |
224
+ | 0.3143 | 4.1 | 1690 | 0.8294 | 0.7096 | 0.7109 |
225
+ | 0.4337 | 4.13 | 1700 | 0.8897 | 0.6823 | 0.6873 |
226
+ | 0.5192 | 4.15 | 1710 | 0.8754 | 0.6758 | 0.6819 |
227
+ | 0.278 | 4.17 | 1720 | 0.8021 | 0.7096 | 0.7061 |
228
+ | 0.2782 | 4.2 | 1730 | 0.8350 | 0.6992 | 0.7031 |
229
+ | 0.2952 | 4.22 | 1740 | 0.8248 | 0.6966 | 0.6998 |
230
 
231
 
232
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:38d03624d1de58e0ce09cbcc689b146c3eff9fe5302b3cc65dc81e94e686470f
3
  size 498615900
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edf423e69a6fac386ceed6e24b6cb4ef3ba1efa7b662896950ee34e4a3c732ac
3
  size 498615900
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4904e3b92fab79a4767d73e1ccdbb20c6a59c11d28c8ca8045c5d7f8d06200dd
3
  size 4536
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27eb0c4a90d9be1b7118c2a9a5128d88ad532a5fae307b282c4942f8654077aa
3
  size 4536