Video-CCAM-9B-v1.1 / modeling_videoccam.py
jaronfei
first commit
b546355
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
================================================
@author: Jaron
@time: 2024/08/21 17:41:52
@email: [email protected]
@description: Video-CCAM
================================================
"""
import torch
import os.path as osp
from PIL import Image
from peft import PeftModel
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, SiglipVisionModel, SiglipImageProcessor, GenerationConfig
from .configuration_videoccam import VideoCCAMConfig
class VideoCCAM(PreTrainedModel):
config_class = VideoCCAMConfig
_auto_class = 'AutoModel'
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(self, config, device_map: str = 'auto'):
super().__init__(config)
self.image_token = config.image_token
self.video_token = config.video_token
self.vision_select_layer = config.vision_select_layer
self.vision_max_chunk_size = config.vision_max_chunk_size
self.gradient_checkpointing = False
self.projector = AutoModel.from_pretrained(
config.projector_name_or_path,
device_map=device_map,
trust_remote_code=True,
torch_dtype=config.torch_dtype,
attn_implementation='sdpa' if config._attn_implementation == 'flash_attention_2' else config._attn_implementation # CCAM does not support flash_attention_2
)
self.llm = AutoModelForCausalLM.from_pretrained(
config.llm_name_or_path,
device_map=device_map,
torch_dtype=config.torch_dtype,
attn_implementation=config._attn_implementation
)
self.tokenizer = AutoTokenizer.from_pretrained(
config.llm_name_or_path,
additional_special_tokens=[self.image_token, self.video_token]
)
self.generation_config = GenerationConfig.from_pretrained(config.llm_name_or_path)
self.image_token_id, self.video_token_id = self.tokenizer.convert_tokens_to_ids([self.image_token, self.video_token])
self.vision_encoder = SiglipVisionModel.from_pretrained(
config.vision_encoder_name_or_path,
device_map=device_map,
torch_dtype=config.torch_dtype,
attn_implementation=config._attn_implementation
)
self.image_processor = SiglipImageProcessor.from_pretrained(
config.vision_encoder_name_or_path
)
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
if gradient_checkpointing_kwargs is None:
gradient_checkpointing_kwargs = dict(use_reentrant=False)
self.llm.gradient_checkpointing_enable(gradient_checkpointing_kwargs)
self.vision_encoder.gradient_checkpointing_enable(gradient_checkpointing_kwargs)
def forward_visual_embeds(self, pixel_values: torch.Tensor) -> torch.Tensor:
if self.vision_select_layer in {-1, self.vision_encoder.config.num_hidden_layers}:
visual_embeds = self.vision_encoder(pixel_values, output_hidden_states=False).last_hidden_state
else:
visual_embeds = self.vision_encoder(pixel_values, output_hidden_states=True).hidden_states[self.vision_select_layer]
return visual_embeds
@torch.inference_mode
def chat(
self,
messages: list[list[dict]],
images: list[Image.Image, list[Image.Image]] = None,
generation_config = None,
batch_generate: bool = False,
visual_embeds: torch.Tensor = None,
return_visual_embeds: bool = False,
**kwargs
):
if generation_config is None:
generation_config = self.generation_config
# compute visual embeds
if visual_embeds is None:
_images, split_size = [], []
for i in images:
if isinstance(i, Image.Image):
_images.append(i)
split_size.append(1)
else:
_images += i
split_size.append(len(i))
pixel_values = self.image_processor(
_images,
return_tensors='pt'
)['pixel_values'].to(
dtype=self.vision_encoder.get_input_embeddings().weight.dtype,
device=self.vision_encoder.get_input_embeddings().weight.device
)
if 0 < self.vision_max_chunk_size < len(pixel_values):
split_idx = list(range(0, len(pixel_values), self.vision_max_chunk_size)) + [-1]
visual_embeds = torch.cat([
self.forward_visual_embeds(pixel_values[le:ri])
for le, ri in zip(split_idx[:-1], split_idx[1:])
], dim=0)
else:
visual_embeds = self.forward_visual_embeds(pixel_values)
visual_embeds = self.projector(visual_embeds.split(split_size, dim=0))
# compute textual embeds
device = self.llm.get_input_embeddings().weight.device
input_ids = self.tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True) # list[list[int]]
_input_ids, split_idx = [], [0]
for i in input_ids:
_input_ids += i
split_idx.append(split_idx[-1] + len(i))
_input_ids = torch.tensor(_input_ids, dtype=torch.long, device=device)
visual_idx = torch.where((_input_ids == self.image_token_id) | (_input_ids == self.video_token_id))[0].tolist()
assert len(visual_idx) == len(visual_embeds), f'The number of visual tokens ({len(visual_idx)}) should be equal to the number of visual features ({len(visual_embeds)}).'
_input_ids[visual_idx] = 0 # avoid index overflow
_inputs_embeds = self.llm.get_input_embeddings()(_input_ids)
inputs_embeds, cur_visual_pointer = [], 0
for start_idx, end_idx in zip(split_idx[:-1], split_idx[1:]):
if cur_visual_pointer < len(visual_idx) and visual_idx[cur_visual_pointer] < end_idx:
mid_idx = visual_idx[cur_visual_pointer]
embeds = [_inputs_embeds[start_idx:mid_idx], visual_embeds[cur_visual_pointer]]
cur_visual_pointer += 1
while cur_visual_pointer < len(visual_idx) and visual_idx[cur_visual_pointer] < end_idx:
embeds += [_inputs_embeds[mid_idx+1:visual_idx[cur_visual_pointer]], visual_embeds[cur_visual_pointer]]
mid_idx = visual_idx[cur_visual_pointer]
cur_visual_pointer += 1
embeds.append(_inputs_embeds[mid_idx+1:end_idx])
inputs_embeds.append(torch.cat(embeds, dim=0))
# Pure Text
else:
inputs_embeds.append(_inputs_embeds[start_idx:end_idx])
if batch_generate:
B, L = len(inputs_embeds), max(i.size(0) for i in inputs_embeds)
pad_embeds = self.llm.get_input_embeddings()(
torch.tensor([self.tokenizer.pad_token_id], dtype=torch.long, device=device)
) # (1, C)
inputs_embeds_list = []
attention_mask = torch.zeros(B, L, dtype=torch.long, device=device)
for i, embeds in enumerate(inputs_embeds):
l = embeds.size(0)
inputs_embeds_list += [pad_embeds.expand(L - l, -1), embeds]
attention_mask[i, -l:] = 1
inputs_embeds = torch.cat(inputs_embeds_list, dim=0).view(B, L, -1)
output_ids = self.llm.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
**kwargs
)
else:
output_ids = []
for embeds in inputs_embeds:
output_ids.append(self.llm.generate(
inputs_embeds=embeds[None],
attention_mask=torch.ones(1, embeds.size(0), dtype=torch.long, device=device),
generation_config=generation_config,
**kwargs
)[0])
prediction = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
if return_visual_embeds:
return prediction, visual_embeds
else:
return prediction
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: str,
*args,
config: VideoCCAMConfig = None,
torch_dtype: torch.dtype = torch.bfloat16,
device_map: str = 'auto',
**kwargs
) -> PreTrainedModel:
merge_pretrained_lora = kwargs.pop('merge_pretrained_lora', True)
config.torch_dtype = torch_dtype
config.projector_name_or_path = osp.join(pretrained_model_name_or_path, 'projector')
if osp.isdir(cur_path := osp.join(pretrained_model_name_or_path, 'llm')):
config.llm_name_or_path = cur_path
if osp.isdir(cur_path := osp.join(pretrained_model_name_or_path, 'vision_encoder')):
config.vision_encoder_name_or_path = cur_path
model = cls(config, device_map)
# load LoRA if exists
if osp.exists(cur_path := osp.join(pretrained_model_name_or_path, 'llm_adapter')):
model.llm = PeftModel.from_pretrained(model.llm, cur_path, device_map=device_map)
print(f'Load LLM adapter from {cur_path}.')
if merge_pretrained_lora:
model.llm = model.llm.merge_and_unload()
if osp.exists(cur_path := osp.join(pretrained_model_name_or_path, 'vision_encoder_adapter')):
model.vision_encoder = PeftModel.from_pretrained(model.vision_encoder, cur_path, device_map=device_map)
print(f'Load vision encoder adapter from {cur_path}.')
if merge_pretrained_lora:
model.vision_encoder = model.vision_encoder.merge_and_unload()
return model