JEdappully commited on
Commit
af2b0b5
·
1 Parent(s): e946c0d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -45.00 +/- 15.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:663c821b28c85bbe1e9cd0d4c5783b33b52d5aa9cdfbe78a046b93a74f1c1ba2
3
+ size 124464
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7960e19af1c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7960e19a7b00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 100000,
23
+ "_total_timesteps": 100000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1698256586096377631,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKn0CP2VukT9TB6w9w+PzvtN0rL+UAaw9QGMtP/RijD8KBKw9p/yeP7Lusb+0Aqw9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/N5JP3iRpr9eJ2c/3AUnPin8Rb+Trb++y066P88KvD9myOw/leCPv9eSUj+NVIm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAr/9u+MG7FP0mMfT+uEW8/mnKwvpYyoD76EVO/Kn0CP2VukT9TB6w9tT9PPIbP5LzPb7q7YZKGO4f0trxW+B09igsuPE1QnbxFB5u7CjY6P8fwSjy+18U/LTYqPZlZvb/vTc0+QxRTv8Pj877TdKy/lAGsPatjUjzIs+O8+a2Ru+wNZjvOxbK8qCgfPRWFCzy9ybS8vEqTu4zwBz5Fv6c/KuWRvzKikz7PkQQ+MXh9Pi4UU79AYy0/9GKMPwoErD3iN+bAK1DkvBaUgEB/sWw7hMK0vKkoHz0LhQs8w8m0vC9ZoLtjHGw85AG0vzG4kD6G94U+GoAVvNIkHT/lc6o/p/yeP7Lusb+0Aqw92ZFRPG344byiMu855uCDO63At7yoKB89PIULPM7JtLx1i3G7lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.50972235 1.1361815 0.08399834]\n [-0.47634706 -1.3473152 0.08398739]\n [ 0.6772957 1.0967698 0.08399208]\n [ 1.2420853 -1.3900969 0.08398953]]",
34
+ "desired_goal": "[[ 0.7885587 -1.3013144 0.90294445]\n [ 0.16310829 -0.7733789 -0.37437114]\n [ 1.4555296 1.4690799 1.8498657 ]\n [-1.1240412 0.8225531 -1.0728928 ]]",
35
+ "observation": "[[-4.29681152e-01 1.54242516e+00 9.90421832e-01 9.33863521e-01\n -3.44624341e-01 3.12885940e-01 -8.24493051e-01 5.09722352e-01\n 1.13618147e+00 8.39983448e-02 1.26494663e-02 -2.79309861e-02\n -5.68959815e-03 4.10680519e-03 -2.23333966e-02 3.85669097e-02\n 1.06228683e-02 -1.92033295e-02 -4.73109121e-03]\n [ 7.27387071e-01 1.23865074e-02 1.54564643e+00 4.15555723e-02\n -1.47929680e+00 4.00985211e-01 -8.24527919e-01 -4.76347059e-01\n -1.34731519e+00 8.39873850e-02 1.28411455e-02 -2.77956873e-02\n -4.44578798e-03 3.51035129e-03 -2.18228363e-02 3.88571322e-02\n 8.51561595e-03 -2.20688526e-02 -4.49499302e-03]\n [ 1.32753551e-01 1.31052458e+00 -1.13980603e+00 2.88346827e-01\n 1.29462466e-01 2.47528806e-01 -8.24526668e-01 6.77295685e-01\n 1.09676981e+00 8.39920789e-02 -7.19432163e+00 -2.78702583e-02\n 4.01807690e+00 3.61165381e-03 -2.20654085e-02 3.88571359e-02\n 8.51560663e-03 -2.20688637e-02 -4.89344401e-03]\n [ 1.44110648e-02 -1.40630770e+00 2.82655269e-01 2.61654079e-01\n -9.12478007e-03 6.13843083e-01 1.33166182e+00 1.24208534e+00\n -1.39009690e+00 8.39895308e-02 1.27911204e-02 -2.75842790e-02\n 4.56233567e-04 4.02461272e-03 -2.24307422e-02 3.88571322e-02\n 8.51565227e-03 -2.20688842e-02 -3.68568045e-03]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMSITvtZAQjwK16M8KhYUvvg65L0K16M8ao48PclDAD0K16M8tXh6PVd3uT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASjf+PaA84j2ONkI+vtISvVgt3j0K16M8oP8IvUBAej03G6Q9RRjYPVLkGz0B9Iw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAMSITvtZAQjwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACoWFL74OuS9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABqjjw9yUMAPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtXh6PVd3uT0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.14368512 0.01185628 0.02 ]\n [-0.1446158 -0.1114406 0.02 ]\n [ 0.04603425 0.03131464 0.02 ]\n [ 0.06115027 0.09055965 0.02 ]]",
45
+ "desired_goal": "[[ 0.12412889 0.1104672 0.18966123]\n [-0.03584551 0.10848492 0.02 ]\n [-0.03344691 0.06109643 0.08013003]\n [ 0.10551504 0.03805954 0.06882478]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4368512e-01\n 1.1856278e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4461580e-01\n -1.1144060e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.6034254e-02\n 3.1314645e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.1150271e-02\n 9.0559654e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0ByMLjtG/etdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByLQZzgdfcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByMTlDF6zFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByMafywwCbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByOf56+nIidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByNo1FYuCgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByPEdLg4wRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByQAE4ecQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BySMKD0163dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByRUztTkyUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByS1z/6wdKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByTxC0F8ohdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByV9PJq7AddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByVFIUahpQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByWd2q1gIAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByXdY9xIatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByZpmnO0LMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByYyKziS7odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByaKSdOIqLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byae06YE4edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BycauHN5dGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BybewcHWz4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BychH6MzdldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BycsFwDNhWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byeoh2W6bwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bydt6HCXQddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bye1kc0cfedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByfEQd0aIfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByhBaSs8xLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BygFnjABT5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByhH3pOerddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByhQgpz90jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByjLkiliz+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByiPZIxxkvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByjVUbT+efdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byjcgpz90jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BylY+qzZ6EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BykcbBGhEjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byldqxkd3jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BylluGbkOqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByniwbEP1+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BymmWw/xDtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BynvSb6P8ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byn2NIbwSbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byp1Cb+cYqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byo5gmZ3LWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byp9JL/S6UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByqHoaDPGAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BysHRrrPdEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByrLyGzru6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BysPtiQT24dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BysYlTm4iHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByuWPvKEFodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BytbbM5fdAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByugWRA8jidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByutG6PKdQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BywqDDjzZpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByvuXNTtLMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BywwFqzqrzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byw4xgy/KydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byy0Vj7Q9idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byx3llsguAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byy7E74i5edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByzI8xKxs3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By1E/gR9PUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By0IgxJul5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By1KGHpKSQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By1Ru3trsTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By3QZk078vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By2VJoTPB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By3Z5Z8rqddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By3jynUDuCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By5fvOQhfTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By4jHzYmLMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By5lwwTM7mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By5wtkFwDOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By7vPt2LYPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By6zZ+QU5/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0By62XmeUY9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By732QGOdYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By78XzlLezdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By942hqTKUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By8+9oN/e+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By+DhXKbKBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By+L7SApazdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzAJDx9XtCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By/R0ZFXq8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzAVeeFtbcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzAcyRB/qgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzCaxMWXTmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzBhVU+9rXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzCrwz+FURdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzDq5VfeDWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzF6LVFx4qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzFJM10knkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzGgOuq3mWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzHc52hZhbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzJoDeTFERdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzI0dGRV6vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzKMILPUrkdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 5000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e34d6387f3828f509a4d2b8976a5e2f00545b3703c09909c426641d3100b407f
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:814a0317a70d27884ef551d81468d5293cc6795cc23fbff341fa4cdd93908ceb
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7960e19af1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7960e19a7b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698256586096377631, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKn0CP2VukT9TB6w9w+PzvtN0rL+UAaw9QGMtP/RijD8KBKw9p/yeP7Lusb+0Aqw9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/N5JP3iRpr9eJ2c/3AUnPin8Rb+Trb++y066P88KvD9myOw/leCPv9eSUj+NVIm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAr/9u+MG7FP0mMfT+uEW8/mnKwvpYyoD76EVO/Kn0CP2VukT9TB6w9tT9PPIbP5LzPb7q7YZKGO4f0trxW+B09igsuPE1QnbxFB5u7CjY6P8fwSjy+18U/LTYqPZlZvb/vTc0+QxRTv8Pj877TdKy/lAGsPatjUjzIs+O8+a2Ru+wNZjvOxbK8qCgfPRWFCzy9ybS8vEqTu4zwBz5Fv6c/KuWRvzKikz7PkQQ+MXh9Pi4UU79AYy0/9GKMPwoErD3iN+bAK1DkvBaUgEB/sWw7hMK0vKkoHz0LhQs8w8m0vC9ZoLtjHGw85AG0vzG4kD6G94U+GoAVvNIkHT/lc6o/p/yeP7Lusb+0Aqw92ZFRPG344byiMu855uCDO63At7yoKB89PIULPM7JtLx1i3G7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.50972235 1.1361815 0.08399834]\n [-0.47634706 -1.3473152 0.08398739]\n [ 0.6772957 1.0967698 0.08399208]\n [ 1.2420853 -1.3900969 0.08398953]]", "desired_goal": "[[ 0.7885587 -1.3013144 0.90294445]\n [ 0.16310829 -0.7733789 -0.37437114]\n [ 1.4555296 1.4690799 1.8498657 ]\n [-1.1240412 0.8225531 -1.0728928 ]]", "observation": "[[-4.29681152e-01 1.54242516e+00 9.90421832e-01 9.33863521e-01\n -3.44624341e-01 3.12885940e-01 -8.24493051e-01 5.09722352e-01\n 1.13618147e+00 8.39983448e-02 1.26494663e-02 -2.79309861e-02\n -5.68959815e-03 4.10680519e-03 -2.23333966e-02 3.85669097e-02\n 1.06228683e-02 -1.92033295e-02 -4.73109121e-03]\n [ 7.27387071e-01 1.23865074e-02 1.54564643e+00 4.15555723e-02\n -1.47929680e+00 4.00985211e-01 -8.24527919e-01 -4.76347059e-01\n -1.34731519e+00 8.39873850e-02 1.28411455e-02 -2.77956873e-02\n -4.44578798e-03 3.51035129e-03 -2.18228363e-02 3.88571322e-02\n 8.51561595e-03 -2.20688526e-02 -4.49499302e-03]\n [ 1.32753551e-01 1.31052458e+00 -1.13980603e+00 2.88346827e-01\n 1.29462466e-01 2.47528806e-01 -8.24526668e-01 6.77295685e-01\n 1.09676981e+00 8.39920789e-02 -7.19432163e+00 -2.78702583e-02\n 4.01807690e+00 3.61165381e-03 -2.20654085e-02 3.88571359e-02\n 8.51560663e-03 -2.20688637e-02 -4.89344401e-03]\n [ 1.44110648e-02 -1.40630770e+00 2.82655269e-01 2.61654079e-01\n -9.12478007e-03 6.13843083e-01 1.33166182e+00 1.24208534e+00\n -1.39009690e+00 8.39895308e-02 1.27911204e-02 -2.75842790e-02\n 4.56233567e-04 4.02461272e-03 -2.24307422e-02 3.88571322e-02\n 8.51565227e-03 -2.20688842e-02 -3.68568045e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMSITvtZAQjwK16M8KhYUvvg65L0K16M8ao48PclDAD0K16M8tXh6PVd3uT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASjf+PaA84j2ONkI+vtISvVgt3j0K16M8oP8IvUBAej03G6Q9RRjYPVLkGz0B9Iw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAMSITvtZAQjwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACoWFL74OuS9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABqjjw9yUMAPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtXh6PVd3uT0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.14368512 0.01185628 0.02 ]\n [-0.1446158 -0.1114406 0.02 ]\n [ 0.04603425 0.03131464 0.02 ]\n [ 0.06115027 0.09055965 0.02 ]]", "desired_goal": "[[ 0.12412889 0.1104672 0.18966123]\n [-0.03584551 0.10848492 0.02 ]\n [-0.03344691 0.06109643 0.08013003]\n [ 0.10551504 0.03805954 0.06882478]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4368512e-01\n 1.1856278e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4461580e-01\n -1.1144060e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.6034254e-02\n 3.1314645e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.1150271e-02\n 9.0559654e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0ByMLjtG/etdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByLQZzgdfcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByMTlDF6zFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByMafywwCbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByOf56+nIidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByNo1FYuCgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByPEdLg4wRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByQAE4ecQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BySMKD0163dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByRUztTkyUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByS1z/6wdKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByTxC0F8ohdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByV9PJq7AddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByVFIUahpQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByWd2q1gIAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByXdY9xIatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByZpmnO0LMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByYyKziS7odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByaKSdOIqLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byae06YE4edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BycauHN5dGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BybewcHWz4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BychH6MzdldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BycsFwDNhWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byeoh2W6bwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bydt6HCXQddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bye1kc0cfedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByfEQd0aIfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByhBaSs8xLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BygFnjABT5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByhH3pOerddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByhQgpz90jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByjLkiliz+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByiPZIxxkvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByjVUbT+efdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byjcgpz90jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BylY+qzZ6EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BykcbBGhEjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byldqxkd3jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BylluGbkOqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByniwbEP1+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BymmWw/xDtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BynvSb6P8ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byn2NIbwSbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byp1Cb+cYqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byo5gmZ3LWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byp9JL/S6UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByqHoaDPGAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BysHRrrPdEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByrLyGzru6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BysPtiQT24dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BysYlTm4iHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByuWPvKEFodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BytbbM5fdAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByugWRA8jidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByutG6PKdQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BywqDDjzZpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByvuXNTtLMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BywwFqzqrzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byw4xgy/KydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byy0Vj7Q9idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byx3llsguAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Byy7E74i5edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ByzI8xKxs3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By1E/gR9PUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By0IgxJul5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By1KGHpKSQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By1Ru3trsTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By3QZk078vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By2VJoTPB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By3Z5Z8rqddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By3jynUDuCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By5fvOQhfTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By4jHzYmLMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By5lwwTM7mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By5wtkFwDOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By7vPt2LYPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By6zZ+QU5/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0By62XmeUY9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By732QGOdYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By78XzlLezdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By942hqTKUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By8+9oN/e+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By+DhXKbKBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By+L7SApazdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzAJDx9XtCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0By/R0ZFXq8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzAVeeFtbcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzAcyRB/qgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzCaxMWXTmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzBhVU+9rXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzCrwz+FURdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzDq5VfeDWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzF6LVFx4qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzFJM10knkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzGgOuq3mWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzHc52hZhbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzJoDeTFERdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzI0dGRV6vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzKMILPUrkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (741 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T18:01:36.719117"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4496ef64a17f2fc3937930204cd4c1f0da5b19a901eb3b6a519fcbc3c2498b1b
3
+ size 3013