update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- recall
|
8 |
+
- precision
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: distilbert-base-uncased_fine_tuned
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# distilbert-base-uncased_fine_tuned
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.0159
|
23 |
+
- Accuracy: {'accuracy': 0.9095537914043252}
|
24 |
+
- Recall: {'recall': 0.8936873290793071}
|
25 |
+
- Precision: {'precision': 0.916024293389395}
|
26 |
+
- F1: {'f1': 0.9047179605490829}
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 1000
|
52 |
+
- num_epochs: 15
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:------------------------------:|:---------------------------------:|:--------------------------:|
|
58 |
+
| 0.256 | 1.0 | 2284 | 0.2569 | {'accuracy': 0.9085683000273748} | {'recall': 0.8976754785779398} | {'precision': 0.9107514450867052} | {'f1': 0.9041661884540342} |
|
59 |
+
| 0.1948 | 2.0 | 4568 | 0.2471 | {'accuracy': 0.9138242540377771} | {'recall': 0.8644029170464904} | {'precision': 0.9518193224592221} | {'f1': 0.9060074047533739} |
|
60 |
+
| 0.1318 | 3.0 | 6852 | 0.3057 | {'accuracy': 0.914207500684369} | {'recall': 0.8977894257064722} | {'precision': 0.9216282606152767} | {'f1': 0.9095526695526697} |
|
61 |
+
| 0.0865 | 4.0 | 9136 | 0.4174 | {'accuracy': 0.9047358335614564} | {'recall': 0.8697584320875114} | {'precision': 0.9274605103280681} | {'f1': 0.8976831706456546} |
|
62 |
+
| 0.0545 | 5.0 | 11420 | 0.4635 | {'accuracy': 0.9095537914043252} | {'recall': 0.8849134001823155} | {'precision': 0.9236441484300666} | {'f1': 0.9038640595903165} |
|
63 |
+
| 0.0359 | 6.0 | 13704 | 0.5654 | {'accuracy': 0.9071448124828908} | {'recall': 0.8919781221513218} | {'precision': 0.9127798507462687} | {'f1': 0.9022591055786076} |
|
64 |
+
| 0.0262 | 7.0 | 15988 | 0.5568 | {'accuracy': 0.8994251300301123} | {'recall': 0.900865998176846} | {'precision': 0.8910176941282543} | {'f1': 0.8959147827072356} |
|
65 |
+
| 0.0181 | 8.0 | 18272 | 0.6846 | {'accuracy': 0.9042430878729811} | {'recall': 0.9026891522333638} | {'precision': 0.898491550413973} | {'f1': 0.9005854601261866} |
|
66 |
+
| 0.0121 | 9.0 | 20556 | 0.7516 | {'accuracy': 0.9071448124828908} | {'recall': 0.8990428441203282} | {'precision': 0.906896551724138} | {'f1': 0.9029526207370108} |
|
67 |
+
| 0.0119 | 10.0 | 22840 | 0.8614 | {'accuracy': 0.9050095811661648} | {'recall': 0.9002962625341842} | {'precision': 0.9018376897614427} | {'f1': 0.9010663169299197} |
|
68 |
+
| 0.0105 | 11.0 | 25124 | 0.7298 | {'accuracy': 0.9105940323022174} | {'recall': 0.8907247037374658} | {'precision': 0.9206218348839948} | {'f1': 0.9054265361672554} |
|
69 |
+
| 0.0049 | 12.0 | 27408 | 0.9237 | {'accuracy': 0.9101560361346839} | {'recall': 0.8828623518687329} | {'precision': 0.9266834110752302} | {'f1': 0.9042422827799498} |
|
70 |
+
| 0.0026 | 13.0 | 29692 | 0.9489 | {'accuracy': 0.9066520667944156} | {'recall': 0.8988149498632635} | {'precision': 0.9061458931648478} | {'f1': 0.9024655340083519} |
|
71 |
+
| 0.0016 | 14.0 | 31976 | 1.0045 | {'accuracy': 0.9099917875718587} | {'recall': 0.8963081130355515} | {'precision': 0.9146511627906977} | {'f1': 0.9053867403314917} |
|
72 |
+
| 0.0022 | 15.0 | 34260 | 1.0159 | {'accuracy': 0.9095537914043252} | {'recall': 0.8936873290793071} | {'precision': 0.916024293389395} | {'f1': 0.9047179605490829} |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.21.0
|
78 |
+
- Pytorch 1.12.0+cu113
|
79 |
+
- Datasets 2.4.0
|
80 |
+
- Tokenizers 0.12.1
|