File size: 6,411 Bytes
4690f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5603adc
4690f14
 
5603adc
4690f14
 
5603adc
4690f14
 
5603adc
4690f14
 
 
 
 
 
 
 
 
5603adc
 
 
 
 
4690f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5603adc
4690f14
 
 
 
5603adc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4690f14
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---

library_name: transformers
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_MIX-finetune
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9025
    - name: Precision
      type: precision
      value: 0.9064641723426297
    - name: Recall
      type: recall
      value: 0.9025
    - name: F1
      type: f1
      value: 0.901111416212371
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_MIX-finetune



This model was trained from scratch on the imagefolder dataset.

It achieves the following results on the evaluation set:

- Loss: 0.3739

- Accuracy: 0.9025

- Precision: 0.9065

- Recall: 0.9025

- F1: 0.9011



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch   | Step | Validation Loss | Accuracy | Precision | Recall | F1     |

|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|

| 0.1672        | 0.3333  | 100  | 0.3739          | 0.9025   | 0.9065    | 0.9025 | 0.9011 |

| 0.1364        | 0.6667  | 200  | 0.7118          | 0.7879   | 0.8371    | 0.7879 | 0.7837 |

| 0.0603        | 1.0     | 300  | 0.6678          | 0.8275   | 0.8502    | 0.8275 | 0.8257 |

| 0.0532        | 1.3333  | 400  | 0.6051          | 0.8596   | 0.8785    | 0.8596 | 0.8578 |

| 0.0195        | 1.6667  | 500  | 0.6989          | 0.8263   | 0.8493    | 0.8263 | 0.8278 |

| 0.0284        | 2.0     | 600  | 0.7349          | 0.8342   | 0.8608    | 0.8342 | 0.8366 |

| 0.0145        | 2.3333  | 700  | 0.7102          | 0.8662   | 0.8741    | 0.8662 | 0.8636 |

| 0.0142        | 2.6667  | 800  | 0.7562          | 0.8583   | 0.8652    | 0.8583 | 0.8554 |

| 0.0327        | 3.0     | 900  | 0.6251          | 0.87     | 0.8830    | 0.87   | 0.8697 |

| 0.0014        | 3.3333  | 1000 | 0.6991          | 0.8571   | 0.8772    | 0.8571 | 0.8535 |

| 0.0015        | 3.6667  | 1100 | 0.4318          | 0.9075   | 0.9117    | 0.9075 | 0.9077 |

| 0.0022        | 4.0     | 1200 | 0.7833          | 0.8592   | 0.8752    | 0.8592 | 0.8583 |

| 0.0049        | 4.3333  | 1300 | 0.4950          | 0.9054   | 0.9088    | 0.9054 | 0.9049 |

| 0.0125        | 4.6667  | 1400 | 0.5476          | 0.8879   | 0.8898    | 0.8879 | 0.8873 |

| 0.0163        | 5.0     | 1500 | 0.4917          | 0.9096   | 0.9099    | 0.9096 | 0.9087 |

| 0.003         | 5.3333  | 1600 | 0.8279          | 0.8612   | 0.8665    | 0.8612 | 0.8586 |

| 0.0027        | 5.6667  | 1700 | 0.9960          | 0.8242   | 0.8615    | 0.8242 | 0.8141 |

| 0.0015        | 6.0     | 1800 | 0.7634          | 0.8621   | 0.8865    | 0.8621 | 0.8611 |

| 0.0006        | 6.3333  | 1900 | 0.5313          | 0.9      | 0.9068    | 0.9    | 0.8991 |

| 0.0005        | 6.6667  | 2000 | 0.4222          | 0.9225   | 0.9243    | 0.9225 | 0.9222 |

| 0.0322        | 7.0     | 2100 | 0.5260          | 0.9067   | 0.9115    | 0.9067 | 0.9063 |

| 0.0106        | 7.3333  | 2200 | 0.5679          | 0.8817   | 0.8903    | 0.8817 | 0.8819 |

| 0.0006        | 7.6667  | 2300 | 0.7876          | 0.8517   | 0.8828    | 0.8517 | 0.8532 |

| 0.0004        | 8.0     | 2400 | 0.5605          | 0.8992   | 0.9061    | 0.8992 | 0.8987 |

| 0.0003        | 8.3333  | 2500 | 0.5620          | 0.9021   | 0.9084    | 0.9021 | 0.9016 |

| 0.0003        | 8.6667  | 2600 | 0.5725          | 0.9004   | 0.9071    | 0.9004 | 0.9001 |

| 0.0002        | 9.0     | 2700 | 0.5745          | 0.9008   | 0.9074    | 0.9008 | 0.9006 |

| 0.0002        | 9.3333  | 2800 | 0.5751          | 0.9012   | 0.9074    | 0.9012 | 0.9009 |

| 0.0002        | 9.6667  | 2900 | 0.5769          | 0.9017   | 0.9078    | 0.9017 | 0.9013 |

| 0.0002        | 10.0    | 3000 | 0.5792          | 0.9012   | 0.9075    | 0.9012 | 0.9009 |

| 0.0002        | 10.3333 | 3100 | 0.5812          | 0.9017   | 0.9078    | 0.9017 | 0.9014 |

| 0.0002        | 10.6667 | 3200 | 0.5832          | 0.9017   | 0.9078    | 0.9017 | 0.9014 |

| 0.0002        | 11.0    | 3300 | 0.5849          | 0.9017   | 0.9078    | 0.9017 | 0.9014 |

| 0.0002        | 11.3333 | 3400 | 0.5864          | 0.9021   | 0.9080    | 0.9021 | 0.9018 |

| 0.0002        | 11.6667 | 3500 | 0.5881          | 0.9021   | 0.9080    | 0.9021 | 0.9018 |

| 0.0001        | 12.0    | 3600 | 0.5898          | 0.9029   | 0.9086    | 0.9029 | 0.9026 |

| 0.0002        | 12.3333 | 3700 | 0.5913          | 0.9033   | 0.9089    | 0.9033 | 0.9030 |

| 0.0001        | 12.6667 | 3800 | 0.5925          | 0.9038   | 0.9093    | 0.9038 | 0.9034 |

| 0.0001        | 13.0    | 3900 | 0.5936          | 0.9038   | 0.9093    | 0.9038 | 0.9034 |

| 0.0001        | 13.3333 | 4000 | 0.5945          | 0.9038   | 0.9093    | 0.9038 | 0.9034 |

| 0.0001        | 13.6667 | 4100 | 0.5953          | 0.9038   | 0.9093    | 0.9038 | 0.9034 |

| 0.0001        | 14.0    | 4200 | 0.5961          | 0.9038   | 0.9093    | 0.9038 | 0.9034 |

| 0.0001        | 14.3333 | 4300 | 0.5966          | 0.9038   | 0.9093    | 0.9038 | 0.9034 |

| 0.0001        | 14.6667 | 4400 | 0.5970          | 0.9038   | 0.9093    | 0.9038 | 0.9034 |

| 0.0001        | 15.0    | 4500 | 0.5971          | 0.9038   | 0.9093    | 0.9038 | 0.9034 |





### Framework versions



- Transformers 4.48.2

- Pytorch 2.6.0+cu126

- Datasets 3.2.0

- Tokenizers 0.21.0