vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX
Browse files- README.md +103 -16
- all_results.json +14 -14
- model.safetensors +1 -1
- test_results.json +9 -9
- train_results.json +6 -6
- trainer_state.json +0 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -26,31 +26,31 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Accuracy
|
28 |
type: accuracy
|
29 |
-
value: 0.
|
30 |
- name: Precision
|
31 |
type: precision
|
32 |
-
value: 0.
|
33 |
- name: Recall
|
34 |
type: recall
|
35 |
-
value: 0.
|
36 |
- name: F1
|
37 |
type: f1
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
should probably proofread and complete it, then remove this comment. -->
|
43 |
|
44 |
-
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/cv-inside/vit-base-kidney-stone/runs/
|
45 |
# vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX
|
46 |
|
47 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
48 |
It achieves the following results on the evaluation set:
|
49 |
-
- Loss: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
-
- Precision: 0.
|
52 |
-
- Recall: 0.
|
53 |
-
- F1: 0.
|
54 |
|
55 |
## Model description
|
56 |
|
@@ -75,16 +75,103 @@ The following hyperparameters were used during training:
|
|
75 |
- seed: 42
|
76 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
77 |
- lr_scheduler_type: linear
|
78 |
-
- num_epochs:
|
79 |
- mixed_precision_training: Native AMP
|
80 |
|
81 |
### Training results
|
82 |
|
83 |
-
| Training Loss | Epoch
|
84 |
-
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Accuracy
|
28 |
type: accuracy
|
29 |
+
value: 0.8870833333333333
|
30 |
- name: Precision
|
31 |
type: precision
|
32 |
+
value: 0.8988360882885232
|
33 |
- name: Recall
|
34 |
type: recall
|
35 |
+
value: 0.8870833333333333
|
36 |
- name: F1
|
37 |
type: f1
|
38 |
+
value: 0.8880432263296901
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
should probably proofread and complete it, then remove this comment. -->
|
43 |
|
44 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/cv-inside/vit-base-kidney-stone/runs/bhdwgbgx)
|
45 |
# vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX
|
46 |
|
47 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
48 |
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 0.4892
|
50 |
+
- Accuracy: 0.8871
|
51 |
+
- Precision: 0.8988
|
52 |
+
- Recall: 0.8871
|
53 |
+
- F1: 0.8880
|
54 |
|
55 |
## Model description
|
56 |
|
|
|
75 |
- seed: 42
|
76 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
77 |
- lr_scheduler_type: linear
|
78 |
+
- num_epochs: 30
|
79 |
- mixed_precision_training: Native AMP
|
80 |
|
81 |
### Training results
|
82 |
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
84 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
85 |
+
| 0.3419 | 0.3333 | 100 | 0.5920 | 0.8104 | 0.8329 | 0.8104 | 0.8037 |
|
86 |
+
| 0.1693 | 0.6667 | 200 | 0.6791 | 0.8054 | 0.8274 | 0.8054 | 0.8085 |
|
87 |
+
| 0.1732 | 1.0 | 300 | 0.7756 | 0.7979 | 0.8415 | 0.7979 | 0.7981 |
|
88 |
+
| 0.0691 | 1.3333 | 400 | 0.7158 | 0.8158 | 0.8508 | 0.8158 | 0.8188 |
|
89 |
+
| 0.0714 | 1.6667 | 500 | 0.7522 | 0.8317 | 0.8499 | 0.8317 | 0.8266 |
|
90 |
+
| 0.0673 | 2.0 | 600 | 0.5385 | 0.8621 | 0.8655 | 0.8621 | 0.8598 |
|
91 |
+
| 0.0655 | 2.3333 | 700 | 0.7799 | 0.8433 | 0.8497 | 0.8433 | 0.8359 |
|
92 |
+
| 0.0135 | 2.6667 | 800 | 0.6978 | 0.8396 | 0.8529 | 0.8396 | 0.8413 |
|
93 |
+
| 0.0075 | 3.0 | 900 | 1.0180 | 0.8104 | 0.8370 | 0.8104 | 0.8161 |
|
94 |
+
| 0.0338 | 3.3333 | 1000 | 0.7638 | 0.8429 | 0.8601 | 0.8429 | 0.8422 |
|
95 |
+
| 0.0488 | 3.6667 | 1100 | 1.0401 | 0.7983 | 0.8228 | 0.7983 | 0.7986 |
|
96 |
+
| 0.0794 | 4.0 | 1200 | 0.7388 | 0.8496 | 0.8497 | 0.8496 | 0.8481 |
|
97 |
+
| 0.0034 | 4.3333 | 1300 | 0.9749 | 0.8279 | 0.8427 | 0.8279 | 0.8252 |
|
98 |
+
| 0.0276 | 4.6667 | 1400 | 1.1395 | 0.8067 | 0.8351 | 0.8067 | 0.8116 |
|
99 |
+
| 0.0855 | 5.0 | 1500 | 0.6391 | 0.8729 | 0.8860 | 0.8729 | 0.8763 |
|
100 |
+
| 0.0256 | 5.3333 | 1600 | 1.0149 | 0.8108 | 0.8289 | 0.8108 | 0.8105 |
|
101 |
+
| 0.0017 | 5.6667 | 1700 | 0.9153 | 0.8279 | 0.8575 | 0.8279 | 0.8299 |
|
102 |
+
| 0.0393 | 6.0 | 1800 | 1.0392 | 0.8175 | 0.8205 | 0.8175 | 0.8169 |
|
103 |
+
| 0.0031 | 6.3333 | 1900 | 0.4892 | 0.8871 | 0.8988 | 0.8871 | 0.8880 |
|
104 |
+
| 0.1446 | 6.6667 | 2000 | 0.8977 | 0.8187 | 0.8362 | 0.8187 | 0.8177 |
|
105 |
+
| 0.0176 | 7.0 | 2100 | 0.6661 | 0.8608 | 0.8756 | 0.8608 | 0.8637 |
|
106 |
+
| 0.0312 | 7.3333 | 2200 | 0.7722 | 0.8408 | 0.8520 | 0.8408 | 0.8412 |
|
107 |
+
| 0.0018 | 7.6667 | 2300 | 0.8194 | 0.8483 | 0.8641 | 0.8483 | 0.8453 |
|
108 |
+
| 0.0008 | 8.0 | 2400 | 0.7871 | 0.8571 | 0.8752 | 0.8571 | 0.8535 |
|
109 |
+
| 0.0033 | 8.3333 | 2500 | 0.9942 | 0.8258 | 0.8480 | 0.8258 | 0.8220 |
|
110 |
+
| 0.0017 | 8.6667 | 2600 | 1.1084 | 0.8175 | 0.8562 | 0.8175 | 0.8187 |
|
111 |
+
| 0.0672 | 9.0 | 2700 | 0.8912 | 0.8438 | 0.8734 | 0.8438 | 0.8445 |
|
112 |
+
| 0.0227 | 9.3333 | 2800 | 1.1547 | 0.8113 | 0.8295 | 0.8113 | 0.8086 |
|
113 |
+
| 0.0012 | 9.6667 | 2900 | 1.1734 | 0.8154 | 0.8369 | 0.8154 | 0.8129 |
|
114 |
+
| 0.0011 | 10.0 | 3000 | 0.9762 | 0.8542 | 0.8800 | 0.8542 | 0.8558 |
|
115 |
+
| 0.0006 | 10.3333 | 3100 | 1.0484 | 0.8433 | 0.8707 | 0.8433 | 0.8447 |
|
116 |
+
| 0.0291 | 10.6667 | 3200 | 0.7566 | 0.8475 | 0.8606 | 0.8475 | 0.8473 |
|
117 |
+
| 0.0381 | 11.0 | 3300 | 0.8845 | 0.8496 | 0.8736 | 0.8496 | 0.8499 |
|
118 |
+
| 0.0004 | 11.3333 | 3400 | 0.5031 | 0.8767 | 0.8904 | 0.8767 | 0.8796 |
|
119 |
+
| 0.0237 | 11.6667 | 3500 | 0.7363 | 0.8438 | 0.8639 | 0.8438 | 0.8497 |
|
120 |
+
| 0.0091 | 12.0 | 3600 | 0.8048 | 0.84 | 0.8455 | 0.84 | 0.8418 |
|
121 |
+
| 0.0161 | 12.3333 | 3700 | 0.8593 | 0.8333 | 0.8518 | 0.8333 | 0.8377 |
|
122 |
+
| 0.0389 | 12.6667 | 3800 | 1.0442 | 0.8275 | 0.8661 | 0.8275 | 0.8350 |
|
123 |
+
| 0.0003 | 13.0 | 3900 | 0.9752 | 0.8329 | 0.8535 | 0.8329 | 0.8382 |
|
124 |
+
| 0.0003 | 13.3333 | 4000 | 0.8313 | 0.8521 | 0.8735 | 0.8521 | 0.8564 |
|
125 |
+
| 0.0003 | 13.6667 | 4100 | 1.4003 | 0.7887 | 0.8193 | 0.7887 | 0.7881 |
|
126 |
+
| 0.0007 | 14.0 | 4200 | 1.1201 | 0.8171 | 0.8392 | 0.8171 | 0.8205 |
|
127 |
+
| 0.0002 | 14.3333 | 4300 | 1.0160 | 0.8413 | 0.8667 | 0.8413 | 0.8428 |
|
128 |
+
| 0.0002 | 14.6667 | 4400 | 1.0599 | 0.8271 | 0.8464 | 0.8271 | 0.8282 |
|
129 |
+
| 0.0002 | 15.0 | 4500 | 1.0467 | 0.8358 | 0.8645 | 0.8358 | 0.8385 |
|
130 |
+
| 0.0002 | 15.3333 | 4600 | 0.9069 | 0.8421 | 0.8616 | 0.8421 | 0.8454 |
|
131 |
+
| 0.0002 | 15.6667 | 4700 | 0.9158 | 0.845 | 0.8646 | 0.845 | 0.8483 |
|
132 |
+
| 0.0002 | 16.0 | 4800 | 0.9191 | 0.8471 | 0.8670 | 0.8471 | 0.8504 |
|
133 |
+
| 0.0001 | 16.3333 | 4900 | 0.9290 | 0.845 | 0.8647 | 0.845 | 0.8483 |
|
134 |
+
| 0.0001 | 16.6667 | 5000 | 0.9366 | 0.8471 | 0.8663 | 0.8471 | 0.8502 |
|
135 |
+
| 0.0001 | 17.0 | 5100 | 0.9468 | 0.8471 | 0.8663 | 0.8471 | 0.8502 |
|
136 |
+
| 0.0001 | 17.3333 | 5200 | 0.9553 | 0.8475 | 0.8665 | 0.8475 | 0.8506 |
|
137 |
+
| 0.0001 | 17.6667 | 5300 | 0.9640 | 0.8467 | 0.8666 | 0.8467 | 0.8498 |
|
138 |
+
| 0.0001 | 18.0 | 5400 | 0.9722 | 0.8462 | 0.8662 | 0.8462 | 0.8494 |
|
139 |
+
| 0.0001 | 18.3333 | 5500 | 0.9799 | 0.8462 | 0.8664 | 0.8462 | 0.8494 |
|
140 |
+
| 0.0001 | 18.6667 | 5600 | 0.9872 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
|
141 |
+
| 0.0001 | 19.0 | 5700 | 0.9936 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
|
142 |
+
| 0.0001 | 19.3333 | 5800 | 0.9997 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
|
143 |
+
| 0.0001 | 19.6667 | 5900 | 1.0062 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
|
144 |
+
| 0.0001 | 20.0 | 6000 | 1.0122 | 0.8462 | 0.8663 | 0.8462 | 0.8493 |
|
145 |
+
| 0.0001 | 20.3333 | 6100 | 1.0177 | 0.8462 | 0.8663 | 0.8462 | 0.8493 |
|
146 |
+
| 0.0001 | 20.6667 | 6200 | 1.0232 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
|
147 |
+
| 0.0001 | 21.0 | 6300 | 1.0291 | 0.8471 | 0.8672 | 0.8471 | 0.8502 |
|
148 |
+
| 0.0001 | 21.3333 | 6400 | 1.0342 | 0.8475 | 0.8678 | 0.8475 | 0.8506 |
|
149 |
+
| 0.0001 | 21.6667 | 6500 | 1.0392 | 0.8471 | 0.8675 | 0.8471 | 0.8502 |
|
150 |
+
| 0.0001 | 22.0 | 6600 | 1.0442 | 0.8467 | 0.8674 | 0.8467 | 0.8499 |
|
151 |
+
| 0.0001 | 22.3333 | 6700 | 1.0487 | 0.8467 | 0.8674 | 0.8467 | 0.8499 |
|
152 |
+
| 0.0001 | 22.6667 | 6800 | 1.0533 | 0.8467 | 0.8674 | 0.8467 | 0.8499 |
|
153 |
+
| 0.0001 | 23.0 | 6900 | 1.0578 | 0.8471 | 0.8677 | 0.8471 | 0.8503 |
|
154 |
+
| 0.0001 | 23.3333 | 7000 | 1.0623 | 0.8471 | 0.8682 | 0.8471 | 0.8504 |
|
155 |
+
| 0.0001 | 23.6667 | 7100 | 1.0661 | 0.8467 | 0.8680 | 0.8467 | 0.8500 |
|
156 |
+
| 0.0001 | 24.0 | 7200 | 1.0701 | 0.8467 | 0.8680 | 0.8467 | 0.8500 |
|
157 |
+
| 0.0001 | 24.3333 | 7300 | 1.0740 | 0.8467 | 0.8680 | 0.8467 | 0.8500 |
|
158 |
+
| 0.0 | 24.6667 | 7400 | 1.0775 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
|
159 |
+
| 0.0 | 25.0 | 7500 | 1.0810 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
|
160 |
+
| 0.0 | 25.3333 | 7600 | 1.0841 | 0.8467 | 0.8676 | 0.8467 | 0.8499 |
|
161 |
+
| 0.0 | 25.6667 | 7700 | 1.0872 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
|
162 |
+
| 0.0 | 26.0 | 7800 | 1.0904 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
|
163 |
+
| 0.0 | 26.3333 | 7900 | 1.0937 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
|
164 |
+
| 0.0 | 26.6667 | 8000 | 1.0964 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
|
165 |
+
| 0.0 | 27.0 | 8100 | 1.0986 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
|
166 |
+
| 0.0 | 27.3333 | 8200 | 1.1008 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
167 |
+
| 0.0 | 27.6667 | 8300 | 1.1030 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
168 |
+
| 0.0 | 28.0 | 8400 | 1.1049 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
169 |
+
| 0.0 | 28.3333 | 8500 | 1.1066 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
170 |
+
| 0.0 | 28.6667 | 8600 | 1.1078 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
171 |
+
| 0.0 | 29.0 | 8700 | 1.1090 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
172 |
+
| 0.0 | 29.3333 | 8800 | 1.1098 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
173 |
+
| 0.0 | 29.6667 | 8900 | 1.1103 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
174 |
+
| 0.0 | 30.0 | 9000 | 1.1105 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
|
175 |
|
176 |
|
177 |
### Framework versions
|
all_results.json
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples_per_second":
|
10 |
-
"eval_steps_per_second":
|
11 |
-
"total_flos":
|
12 |
-
"train_loss": 0.
|
13 |
-
"train_runtime":
|
14 |
-
"train_samples_per_second":
|
15 |
-
"train_steps_per_second":
|
16 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_accuracy": 0.8870833333333333,
|
4 |
+
"eval_f1": 0.8880432263296901,
|
5 |
+
"eval_loss": 0.4892176389694214,
|
6 |
+
"eval_precision": 0.8988360882885232,
|
7 |
+
"eval_recall": 0.8870833333333333,
|
8 |
+
"eval_runtime": 16.7314,
|
9 |
+
"eval_samples_per_second": 143.443,
|
10 |
+
"eval_steps_per_second": 17.93,
|
11 |
+
"total_flos": 2.231849311469568e+19,
|
12 |
+
"train_loss": 0.02316958835389879,
|
13 |
+
"train_runtime": 4210.125,
|
14 |
+
"train_samples_per_second": 68.407,
|
15 |
+
"train_steps_per_second": 2.138
|
16 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343236280
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14787cb320225db08f3922079550b8f4c3f0d732808d55ba33a5f6070bc03b1f
|
3 |
size 343236280
|
test_results.json
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples_per_second":
|
10 |
-
"eval_steps_per_second":
|
11 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_accuracy": 0.8870833333333333,
|
4 |
+
"eval_f1": 0.8880432263296901,
|
5 |
+
"eval_loss": 0.4892176389694214,
|
6 |
+
"eval_precision": 0.8988360882885232,
|
7 |
+
"eval_recall": 0.8870833333333333,
|
8 |
+
"eval_runtime": 16.7314,
|
9 |
+
"eval_samples_per_second": 143.443,
|
10 |
+
"eval_steps_per_second": 17.93
|
11 |
}
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos":
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"total_flos": 2.231849311469568e+19,
|
4 |
+
"train_loss": 0.02316958835389879,
|
5 |
+
"train_runtime": 4210.125,
|
6 |
+
"train_samples_per_second": 68.407,
|
7 |
+
"train_steps_per_second": 2.138
|
8 |
}
|
trainer_state.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9ef7f4301a5277e8272768aba19b936a805d557b2e0d7ac135aee1609e4ce27
|
3 |
size 5432
|