File size: 1,396 Bytes
9890e4e
 
 
 
 
 
 
 
 
f7b16f7
1dc374d
9890e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22dfe7
 
 
 
bef6eeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from typing import Dict, List, Any
import transformers
import torch
from datetime import datetime


class EndpointHandler():

    def __init__(self, path=""):
        print(f"Hugging face handler path {path}")
        path = 'mosaicml/mpt-7b'
        self.model = transformers.AutoModelForCausalLM.from_pretrained(path,
            #"/Users/itamarlevi/Downloads/my_repo_hf/hf/mpt-7b/venv/Itamarl/test",
            # 'mosaicml/mpt-7b-instruct',
            # 'mosaicml/mpt-7b',
            trust_remote_code=True,
            torch_dtype=torch.bfloat16,
            max_seq_len=2048
            )

        self.tokenizer = transformers.AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
        print("tokenizer created  ", datetime.now())
        self.generate_text = transformers.pipeline(
            model=self.model,
            tokenizer=self.tokenizer,
            task='text-generation',
            return_full_text=True,
            temperature=0.1,
            top_p=0.15,
            top_k=0,
            # max_new_tokens=64,
            repetition_penalty=1.1
        )

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        print("iiiiiiiiii   " data)
        inputs = data.pop("inputs",data)
        print(inputs)
        res = self.generate_text("Explain to me the difference between nuclear fission and fusion." , max_length= 60)
        return res