IrinaArcadievna commited on
Commit
0f33021
·
verified ·
1 Parent(s): ae79949

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **SAC** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x79a936caacb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79a936cb6600>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706890694716402079, "learning_rate": 0.01, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAERNhPzJZoz/sYmc9NQAlPm/6Uj3lUWc90K5CvyA1HD9KOmc9tCqFvvUFlL7lUWc9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmRnkvq+yCL/jdQu/yabkPpC1qr9kH4m/Bro7v0flmL/B/jo+he/JvwptMz1bbJ0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABvLrw+KNyOv5QZZj+tdt28xsvKvh1QG77YkxO/ERNhPzJZoz/sYmc91j3but2kK7w5SEa8lv6RPPTZdDvKcNU8HpiEO9ZxHbt8uoq6VDoPP0R3ar/dcmY/fwPDPqRmv7uj2Z+9cpQTvzUAJT5v+lI95VFnPTSX2rpUKR68T0c4vM0ZiTzvPoY7d+XYPOOKnjpuJQS8TPuCumhUWD+egDa/eRwHPwHwkz4/kiy+xCuzu/GUE7/QrkK/IDUcP0o6Zz1MQY66q88kvK52NrxVl4Q8D8KMO3fl2Dzoip46byUEvOd+h7pRKTg/XtQ7vyH+VD/uOuY9Qb3LvkAXy7zxlBO/tCqFvvUFlL7lUWc9M5faulUpHrw14zW8zxmJPOI+hjt35dg844qeOm4lBLxv+oK6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.8791972 1.2761595 0.05649082]\n [ 0.1611336 0.05150836 0.05647459]\n [-0.7604799 0.6101856 0.05645207]\n [-0.26009142 -0.28910795 0.05647459]]", "desired_goal": "[[-0.4455078 -0.5339765 -0.54476756]\n [ 0.44658497 -1.3336658 -1.0712705 ]\n [-0.73330724 -1.194497 0.18261243]\n [-1.577622 0.04380516 1.2298692 ]]", "observation": "[[ 3.67541760e-01 -1.11609364e+00 8.98827791e-01 -2.70341281e-02\n -3.96085918e-01 -1.51672795e-01 -5.76474667e-01 8.79197180e-01\n 1.27615952e+00 5.64908236e-02 -1.67268026e-03 -1.04763182e-02\n -1.21021802e-02 1.78215913e-02 3.73613555e-03 2.60547586e-02\n 4.04645409e-03 -2.40241503e-03 -1.05841411e-03]\n [ 5.59483767e-01 -9.15882349e-01 9.00190175e-01 3.80886048e-01\n -5.84109314e-03 -7.80518278e-02 -5.76483846e-01 1.61133602e-01\n 5.15083633e-02 5.64745851e-02 -1.66771421e-03 -9.65340808e-03\n -1.12474700e-02 1.67359356e-02 4.09685774e-03 2.64766049e-02\n 1.20958348e-03 -8.06556456e-03 -9.99310520e-04]\n [ 8.45037937e-01 -7.12900043e-01 5.27778208e-01 2.88940459e-01\n -1.68526635e-01 -5.46786375e-03 -5.76491416e-01 -7.60479927e-01\n 6.10185623e-01 5.64520732e-02 -1.08532002e-03 -1.00592775e-02\n -1.11366939e-02 1.61854420e-02 4.29559452e-03 2.64766049e-02\n 1.20958406e-03 -8.06556549e-03 -1.03375025e-03]\n [ 7.19380438e-01 -7.33709216e-01 8.32002699e-01 1.12417087e-01\n -3.97928268e-01 -2.47913599e-02 -5.76491416e-01 -2.60091424e-01\n -2.89107949e-01 5.64745851e-02 -1.66771410e-03 -9.65340901e-03\n -1.11015337e-02 1.67359393e-02 4.09685168e-03 2.64766049e-02\n 1.20958348e-03 -8.06556456e-03 -9.99284792e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7AelPWwg+T2TwaM8t2piPKwCoTvWwKM8cy+TvZc+bj3Qv6M8cp7PvKm24bzWwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ4EivZtyQL0zLWE9feIbPdoi7r0K16M8O5yEvXhw1b2Ci9M9sqMNvlDiSTt7AjE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACnBUm9s3zuvvqh7j6QhwS+l2oivg/oHrxKVWs17AelPWwg+T2TwaM8tRirthbHnrehVqi5sI4vOJAu4LezeKi3rmucOsJ19jpuRQ+5SbWoO/wtyb6ox+4+k6WkvGTjjrwGCoA8fcUeNbdqYjysAqE71sCjPNWYlrY81hk4j53yuCotMTWKwje3OHiMrN8ok66+coovULLKuC/Drz0UW6O+lovGPrpBN70pP5y9700mPdeBvjRzL5O9lz5uPdC/ozw/2Iw4WzobN+7Jurg3sam3XOoXtsCGUKwS2kwv52BbLruN+7j2HU49vjunvr9p5z6KhLy9TBkjvuoSCz0nY780cp7PvKm24bzWwKM8n5iWtiPWGTjhEam49TcxNbjDN7ew04ysskyUrrhoii/xqMq4lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.08058152 0.12164387 0.01998976]\n [ 0.01381939 0.00491365 0.01998941]\n [-0.07186785 0.05816516 0.01998892]\n [-0.02534411 -0.02755292 0.01998941]]", "desired_goal": "[[-0.03967395 -0.0469843 0.05497475]\n [ 0.03805779 -0.11627741 0.02 ]\n [-0.06475111 -0.10421842 0.10329343]\n [-0.13831976 0.00308051 0.17286102]]", "observation": "[[-4.9077656e-02 -4.6579513e-01 4.6607953e-01 -1.2942338e-01\n -1.5860973e-01 -9.6988818e-03 8.7668434e-07 8.0581516e-02\n 1.2164387e-01 1.9989764e-02 -5.0990734e-06 -1.8927774e-05\n -3.2108001e-04 4.1856139e-05 -2.6724563e-05 -2.0083366e-05\n 1.1933947e-03 1.8803405e-03 -1.3663407e-04]\n [ 5.1485640e-03 -3.9292896e-01 4.6636701e-01 -2.0098483e-02\n -1.7442413e-02 1.5629780e-02 5.9146970e-07 1.3819388e-02\n 4.9136486e-03 1.9989412e-02 -4.4881403e-06 3.6677564e-05\n -1.1568807e-04 6.6003361e-07 -1.0952945e-05 -3.9923863e-12\n -6.6920462e-11 2.5183583e-10 -9.6653239e-05]\n [ 8.5821502e-02 -3.1905425e-01 3.8778371e-01 -4.4740416e-02\n -7.6292343e-02 4.0601667e-02 3.5484729e-07 -7.1867846e-02\n 5.8165159e-02 1.9988924e-02 6.7159992e-05 9.2523069e-06\n -8.9067835e-05 -2.0228892e-05 -2.2637169e-06 -2.9633379e-12\n 1.8631166e-10 4.9880901e-11 -1.1995012e-04]\n [ 5.0321542e-02 -3.2662767e-01 4.5197865e-01 -9.2049673e-02\n -1.5927619e-01 3.3953585e-02 3.5648665e-07 -2.5344107e-02\n -2.7552919e-02 1.9989412e-02 -4.4881158e-06 3.6677473e-05\n -8.0618782e-05 6.6019066e-07 -1.0953219e-05 -4.0025414e-12\n -6.7438846e-11 2.5176461e-10 -9.6635784e-05]]"}, "_episode_num": 10319, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnudRLCemOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnuh+chC+ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvAy3LFGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu/9L6DXfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvCztkWhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvHYuK4x2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvl17x/d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvlK5kK/mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvoNFBppOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvtMZpBX0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwLB4MWoFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwKGPPszEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwNYHHFP0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwSCY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwwmJFb3XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwvxesxO+dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnwwhZ6lchdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnwzt29tdidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw4PvjOs1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXXyZrpJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXReTmnwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxZqoAGSqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxeJvxYq5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx9NHQQcxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx9oBaLXMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyAOg6EJ0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyEuJ+DvmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnysUx20RfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnytNw71ZldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnyz2hIvrXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny5GsvIwNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzgB2OhkBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnzf8XvYvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnziglfJFLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnznGKhtcfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cnzn1YhdMTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0GXj+717dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0GewTufFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0IbbL2YfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0NmHYYixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0r/MnqmkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0sGjCYTkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn0s6i0v4/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0uzjNpuddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn00CiRGMGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1S8YqG1ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1T00Nz8xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1VwIUrTZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1bB8QZn+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn142f029+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn15i3XqZ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn170x/NJOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2BM2vStvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2gf1HvtudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2hJmmLtNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2i7bUPQOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2oQHRkVfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3G9IwudxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3IRwyZa3dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn3JIT4+KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3Jy1NQCTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3PPXK8tgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3tc580DVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3uwl0HQhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3vsmWt2cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn31Ku8scydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4TRrSE13dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4WUEovzwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4bYx+KCQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4hwzk6tDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5KehXbM5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5OnsTnJUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn5P3EqDsddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5SA/C66KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5XSSeRPodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn51nEdeY2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn54ArH2h7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn54WIGhVVdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn55NPxhDxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn59uLJjlQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6b8R15jZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6etHhCMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6f5Wq95AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6kfoicG1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7ClRHf/FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7FdLxqfwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7GuZkTYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7LMRQJokdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7okIomXxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7r0u+RHPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7smff4yodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7xHWrfcfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8PjUVi4KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8RsqBmPHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8S8Vgx8EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8XXwTdtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn81+d9UjtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn84fGMn7YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn85WPkq+bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn890snRb9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYiJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 124975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x79a936ea2b90>", "add": "<function DictReplayBuffer.add at 0x79a936ea2c20>", "sample": "<function DictReplayBuffer.sample at 0x79a936ea2cb0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x79a936ea2d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79a936e9eb40>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVUQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oRCQ1g5UeR8yIYET1tpw7i4wCMA2luY5SKEQX8OuzynWMHH6ilp1cgvaEAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (736 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-02T17:13:18.391641"}
sac-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f97bf12832663f0d60d9482404c857f93a1c482676e2d44951707cb53384f40
3
+ size 3305915
sac-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.1
sac-PandaPickAndPlace-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26fd8eae8e7c430a464db9981e23e20dfb5c67e97376748a6ec5ab3a7c0aeac9
3
+ size 602958
sac-PandaPickAndPlace-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:072dc2599d7b22bc637ac27a54e6b7dc4b71486e78b26719f4d6a71865cb2166
3
+ size 1189802
sac-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x79a936caacb0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x79a936cb6600>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "use_sde": false
14
+ },
15
+ "num_timesteps": 500000,
16
+ "_total_timesteps": 500000,
17
+ "_num_timesteps_at_start": 0,
18
+ "seed": null,
19
+ "action_noise": null,
20
+ "start_time": 1706890694716402079,
21
+ "learning_rate": 0.01,
22
+ "tensorboard_log": null,
23
+ "_last_obs": {
24
+ ":type:": "<class 'collections.OrderedDict'>",
25
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAERNhPzJZoz/sYmc9NQAlPm/6Uj3lUWc90K5CvyA1HD9KOmc9tCqFvvUFlL7lUWc9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmRnkvq+yCL/jdQu/yabkPpC1qr9kH4m/Bro7v0flmL/B/jo+he/JvwptMz1bbJ0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABvLrw+KNyOv5QZZj+tdt28xsvKvh1QG77YkxO/ERNhPzJZoz/sYmc91j3but2kK7w5SEa8lv6RPPTZdDvKcNU8HpiEO9ZxHbt8uoq6VDoPP0R3ar/dcmY/fwPDPqRmv7uj2Z+9cpQTvzUAJT5v+lI95VFnPTSX2rpUKR68T0c4vM0ZiTzvPoY7d+XYPOOKnjpuJQS8TPuCumhUWD+egDa/eRwHPwHwkz4/kiy+xCuzu/GUE7/QrkK/IDUcP0o6Zz1MQY66q88kvK52NrxVl4Q8D8KMO3fl2Dzoip46byUEvOd+h7pRKTg/XtQ7vyH+VD/uOuY9Qb3LvkAXy7zxlBO/tCqFvvUFlL7lUWc9M5faulUpHrw14zW8zxmJPOI+hjt35dg844qeOm4lBLxv+oK6lGgOSwRLE4aUaBJ0lFKUdS4=",
26
+ "achieved_goal": "[[ 0.8791972 1.2761595 0.05649082]\n [ 0.1611336 0.05150836 0.05647459]\n [-0.7604799 0.6101856 0.05645207]\n [-0.26009142 -0.28910795 0.05647459]]",
27
+ "desired_goal": "[[-0.4455078 -0.5339765 -0.54476756]\n [ 0.44658497 -1.3336658 -1.0712705 ]\n [-0.73330724 -1.194497 0.18261243]\n [-1.577622 0.04380516 1.2298692 ]]",
28
+ "observation": "[[ 3.67541760e-01 -1.11609364e+00 8.98827791e-01 -2.70341281e-02\n -3.96085918e-01 -1.51672795e-01 -5.76474667e-01 8.79197180e-01\n 1.27615952e+00 5.64908236e-02 -1.67268026e-03 -1.04763182e-02\n -1.21021802e-02 1.78215913e-02 3.73613555e-03 2.60547586e-02\n 4.04645409e-03 -2.40241503e-03 -1.05841411e-03]\n [ 5.59483767e-01 -9.15882349e-01 9.00190175e-01 3.80886048e-01\n -5.84109314e-03 -7.80518278e-02 -5.76483846e-01 1.61133602e-01\n 5.15083633e-02 5.64745851e-02 -1.66771421e-03 -9.65340808e-03\n -1.12474700e-02 1.67359356e-02 4.09685774e-03 2.64766049e-02\n 1.20958348e-03 -8.06556456e-03 -9.99310520e-04]\n [ 8.45037937e-01 -7.12900043e-01 5.27778208e-01 2.88940459e-01\n -1.68526635e-01 -5.46786375e-03 -5.76491416e-01 -7.60479927e-01\n 6.10185623e-01 5.64520732e-02 -1.08532002e-03 -1.00592775e-02\n -1.11366939e-02 1.61854420e-02 4.29559452e-03 2.64766049e-02\n 1.20958406e-03 -8.06556549e-03 -1.03375025e-03]\n [ 7.19380438e-01 -7.33709216e-01 8.32002699e-01 1.12417087e-01\n -3.97928268e-01 -2.47913599e-02 -5.76491416e-01 -2.60091424e-01\n -2.89107949e-01 5.64745851e-02 -1.66771410e-03 -9.65340901e-03\n -1.11015337e-02 1.67359393e-02 4.09685168e-03 2.64766049e-02\n 1.20958348e-03 -8.06556456e-03 -9.99284792e-04]]"
29
+ },
30
+ "_last_episode_starts": {
31
+ ":type:": "<class 'numpy.ndarray'>",
32
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
33
+ },
34
+ "_last_original_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7AelPWwg+T2TwaM8t2piPKwCoTvWwKM8cy+TvZc+bj3Qv6M8cp7PvKm24bzWwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ4EivZtyQL0zLWE9feIbPdoi7r0K16M8O5yEvXhw1b2Ci9M9sqMNvlDiSTt7AjE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACnBUm9s3zuvvqh7j6QhwS+l2oivg/oHrxKVWs17AelPWwg+T2TwaM8tRirthbHnrehVqi5sI4vOJAu4LezeKi3rmucOsJ19jpuRQ+5SbWoO/wtyb6ox+4+k6WkvGTjjrwGCoA8fcUeNbdqYjysAqE71sCjPNWYlrY81hk4j53yuCotMTWKwje3OHiMrN8ok66+coovULLKuC/Drz0UW6O+lovGPrpBN70pP5y9700mPdeBvjRzL5O9lz5uPdC/ozw/2Iw4WzobN+7Jurg3sam3XOoXtsCGUKwS2kwv52BbLruN+7j2HU49vjunvr9p5z6KhLy9TBkjvuoSCz0nY780cp7PvKm24bzWwKM8n5iWtiPWGTjhEam49TcxNbjDN7ew04ysskyUrrhoii/xqMq4lGgOSwRLE4aUaBJ0lFKUdS4=",
37
+ "achieved_goal": "[[ 0.08058152 0.12164387 0.01998976]\n [ 0.01381939 0.00491365 0.01998941]\n [-0.07186785 0.05816516 0.01998892]\n [-0.02534411 -0.02755292 0.01998941]]",
38
+ "desired_goal": "[[-0.03967395 -0.0469843 0.05497475]\n [ 0.03805779 -0.11627741 0.02 ]\n [-0.06475111 -0.10421842 0.10329343]\n [-0.13831976 0.00308051 0.17286102]]",
39
+ "observation": "[[-4.9077656e-02 -4.6579513e-01 4.6607953e-01 -1.2942338e-01\n -1.5860973e-01 -9.6988818e-03 8.7668434e-07 8.0581516e-02\n 1.2164387e-01 1.9989764e-02 -5.0990734e-06 -1.8927774e-05\n -3.2108001e-04 4.1856139e-05 -2.6724563e-05 -2.0083366e-05\n 1.1933947e-03 1.8803405e-03 -1.3663407e-04]\n [ 5.1485640e-03 -3.9292896e-01 4.6636701e-01 -2.0098483e-02\n -1.7442413e-02 1.5629780e-02 5.9146970e-07 1.3819388e-02\n 4.9136486e-03 1.9989412e-02 -4.4881403e-06 3.6677564e-05\n -1.1568807e-04 6.6003361e-07 -1.0952945e-05 -3.9923863e-12\n -6.6920462e-11 2.5183583e-10 -9.6653239e-05]\n [ 8.5821502e-02 -3.1905425e-01 3.8778371e-01 -4.4740416e-02\n -7.6292343e-02 4.0601667e-02 3.5484729e-07 -7.1867846e-02\n 5.8165159e-02 1.9988924e-02 6.7159992e-05 9.2523069e-06\n -8.9067835e-05 -2.0228892e-05 -2.2637169e-06 -2.9633379e-12\n 1.8631166e-10 4.9880901e-11 -1.1995012e-04]\n [ 5.0321542e-02 -3.2662767e-01 4.5197865e-01 -9.2049673e-02\n -1.5927619e-01 3.3953585e-02 3.5648665e-07 -2.5344107e-02\n -2.7552919e-02 1.9989412e-02 -4.4881158e-06 3.6677473e-05\n -8.0618782e-05 6.6019066e-07 -1.0953219e-05 -4.0025414e-12\n -6.7438846e-11 2.5176461e-10 -9.6635784e-05]]"
40
+ },
41
+ "_episode_num": 10319,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.0,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnudRLCemOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnuh+chC+ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvAy3LFGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu/9L6DXfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvCztkWhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvHYuK4x2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvl17x/d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvlK5kK/mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvoNFBppOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvtMZpBX0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwLB4MWoFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwKGPPszEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwNYHHFP0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwSCY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwwmJFb3XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwvxesxO+dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnwwhZ6lchdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnwzt29tdidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw4PvjOs1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXXyZrpJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXReTmnwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxZqoAGSqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxeJvxYq5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx9NHQQcxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx9oBaLXMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyAOg6EJ0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyEuJ+DvmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnysUx20RfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnytNw71ZldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnyz2hIvrXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny5GsvIwNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzgB2OhkBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnzf8XvYvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnziglfJFLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnznGKhtcfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cnzn1YhdMTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0GXj+717dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0GewTufFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0IbbL2YfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0NmHYYixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0r/MnqmkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0sGjCYTkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn0s6i0v4/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0uzjNpuddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn00CiRGMGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1S8YqG1ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1T00Nz8xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1VwIUrTZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1bB8QZn+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn142f029+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn15i3XqZ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn170x/NJOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2BM2vStvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2gf1HvtudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2hJmmLtNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2i7bUPQOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2oQHRkVfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3G9IwudxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3IRwyZa3dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn3JIT4+KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3Jy1NQCTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3PPXK8tgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3tc580DVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3uwl0HQhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3vsmWt2cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn31Ku8scydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4TRrSE13dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4WUEovzwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4bYx+KCQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4hwzk6tDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5KehXbM5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5OnsTnJUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn5P3EqDsddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5SA/C66KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5XSSeRPodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn51nEdeY2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn54ArH2h7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn54WIGhVVdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn55NPxhDxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn59uLJjlQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6b8R15jZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6etHhCMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6f5Wq95AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6kfoicG1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7ClRHf/FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7FdLxqfwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7GuZkTYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7LMRQJokdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7okIomXxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7r0u+RHPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7smff4yodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7xHWrfcfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8PjUVi4KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8RsqBmPHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8S8Vgx8EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8XXwTdtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn81+d9UjtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn84fGMn7YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn85WPkq+bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn890snRb9dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYiJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
53
+ },
54
+ "_n_updates": 124975,
55
+ "buffer_size": 1000000,
56
+ "batch_size": 256,
57
+ "learning_starts": 100,
58
+ "tau": 0.005,
59
+ "gamma": 0.99,
60
+ "gradient_steps": 1,
61
+ "optimize_memory_usage": false,
62
+ "replay_buffer_class": {
63
+ ":type:": "<class 'abc.ABCMeta'>",
64
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
65
+ "__module__": "stable_baselines3.common.buffers",
66
+ "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
67
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
68
+ "__init__": "<function DictReplayBuffer.__init__ at 0x79a936ea2b90>",
69
+ "add": "<function DictReplayBuffer.add at 0x79a936ea2c20>",
70
+ "sample": "<function DictReplayBuffer.sample at 0x79a936ea2cb0>",
71
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x79a936ea2d40>",
72
+ "__abstractmethods__": "frozenset()",
73
+ "_abc_impl": "<_abc._abc_data object at 0x79a936e9eb40>"
74
+ },
75
+ "replay_buffer_kwargs": {},
76
+ "train_freq": {
77
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
78
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
79
+ },
80
+ "use_sde_at_warmup": false,
81
+ "target_entropy": -4.0,
82
+ "ent_coef": "auto",
83
+ "target_update_interval": 1,
84
+ "observation_space": {
85
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
86
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
87
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
88
+ "_shape": null,
89
+ "dtype": null,
90
+ "_np_random": null
91
+ },
92
+ "action_space": {
93
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
94
+ ":serialized:": "gAWVUQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oRCQ1g5UeR8yIYET1tpw7i4wCMA2luY5SKEQX8OuzynWMHH6ilp1cgvaEAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
95
+ "dtype": "float32",
96
+ "bounded_below": "[ True True True True]",
97
+ "bounded_above": "[ True True True True]",
98
+ "_shape": [
99
+ 4
100
+ ],
101
+ "low": "[-1. -1. -1. -1.]",
102
+ "high": "[1. 1. 1. 1.]",
103
+ "low_repr": "-1.0",
104
+ "high_repr": "1.0",
105
+ "_np_random": "Generator(PCG64)"
106
+ },
107
+ "n_envs": 4,
108
+ "lr_schedule": {
109
+ ":type:": "<class 'function'>",
110
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
111
+ },
112
+ "batch_norm_stats": [],
113
+ "batch_norm_stats_target": []
114
+ }
sac-PandaPickAndPlace-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e9d166adcd153a51d8b70a900dfacc851efb2cbeee94d999420785237287b37
3
+ size 1940
sac-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d40e3a61913a487fdbe5e8b837db707dc72ce3fb83f0553c408bd0a6bb1510f
3
+ size 1489782
sac-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7062e66fe3d82a5cc6af42c94bb8ce88ca28fd80ff48d9515f0cabeecab6ce06
3
+ size 1180
sac-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.2.1
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b18ad84576e3ebe8166d6b608c59932116aa256e529f9d1f81a54497559fc4a1
3
+ size 3222