File size: 1,173 Bytes
3cdd624
6a11c9a
ad8f797
61d68d7
6a11c9a
ad8f797
9480619
 
ad8f797
93e33c7
ad8f797
93e33c7
ad8f797
93e33c7
ad8f797
 
 
93e33c7
ad8f797
 
93e33c7
ad8f797
93e33c7
ad8f797
 
 
93e33c7
ad8f797
 
93e33c7
ad8f797
93e33c7
ad8f797
 
786de25
 
ec82a77
e8e1f22
8e10f98
3cdd624
3b401dd
6a11c9a
87fd284
6a11c9a
04a29db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
language:
- en
license: mit
tags:
- finance
pipeline_tag: text-generation
widget:
- example_title: Easy
  text: '<|im_start|>user

    How do call options benefit the buyer?<|im_end|>

    <|im_start|>assistant

    '
- example_title: Medium
  text: '<|im_start|>user

    Why might a trader choose to quickly exit a losing position, even if they still
    believe in the original trade idea?<|im_end|>

    <|im_start|>assistant

    '
- example_title: Hard
  text: '<|im_start|>user

    In the context of Harry Markowitz''s Portfolio Selection theory, what does an
    ''efficient'' portfolio refer to?<|im_end|>

    <|im_start|>assistant

    '
inference:
  parameters:
    temperature: 0.2
    min_new_tokens: 20
    max_new_tokens: 250
---
# AlphaBlind Tiny v0.001

Our Proof-of-Concept (POC) for the LLM-ADE framework (https://arxiv.org/abs/2404.13028). A very early, initial version of TinyLlama processing and ingesting llm-ade-fin_data-subset-earnings-10k and other financial data with the LLM-ADE framework.

Note: This model has not been thoroughly tested, and is very small - it can run on a Macbook Pro. Please do not use this version of the model as is.