File size: 1,173 Bytes
3cdd624 6a11c9a ad8f797 61d68d7 6a11c9a ad8f797 9480619 ad8f797 93e33c7 ad8f797 93e33c7 ad8f797 93e33c7 ad8f797 93e33c7 ad8f797 93e33c7 ad8f797 93e33c7 ad8f797 93e33c7 ad8f797 93e33c7 ad8f797 93e33c7 ad8f797 786de25 ec82a77 e8e1f22 8e10f98 3cdd624 3b401dd 6a11c9a 87fd284 6a11c9a 04a29db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
language:
- en
license: mit
tags:
- finance
pipeline_tag: text-generation
widget:
- example_title: Easy
text: '<|im_start|>user
How do call options benefit the buyer?<|im_end|>
<|im_start|>assistant
'
- example_title: Medium
text: '<|im_start|>user
Why might a trader choose to quickly exit a losing position, even if they still
believe in the original trade idea?<|im_end|>
<|im_start|>assistant
'
- example_title: Hard
text: '<|im_start|>user
In the context of Harry Markowitz''s Portfolio Selection theory, what does an
''efficient'' portfolio refer to?<|im_end|>
<|im_start|>assistant
'
inference:
parameters:
temperature: 0.2
min_new_tokens: 20
max_new_tokens: 250
---
# AlphaBlind Tiny v0.001
Our Proof-of-Concept (POC) for the LLM-ADE framework (https://arxiv.org/abs/2404.13028). A very early, initial version of TinyLlama processing and ingesting llm-ade-fin_data-subset-earnings-10k and other financial data with the LLM-ADE framework.
Note: This model has not been thoroughly tested, and is very small - it can run on a Macbook Pro. Please do not use this version of the model as is. |