File size: 1,417 Bytes
e22e8dd f7cc704 e22e8dd f7cc704 e22e8dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
language: en
license: apache-2.0
library_name: transformers
---
# SQFT Base Model: sqft-mistral-7b-v0.3-30-base
- Source Model: [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 30%
- Quantization: No
## Model Sources
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
## How to get this model
Refer to the command in [SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh#11).
## Citation
```bash
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
year={2024}
}
```
## Acknowledgement
Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.
## License
Apache-2.0 |