File size: 1,213 Bytes
6b0d806
d70d94a
6b0d806
d70d94a
 
 
3241dc5
9a17416
d70d94a
 
 
 
 
6b0d806
d70d94a
 
 
 
 
6627905
d70d94a
 
 
235263f
d70d94a
235263f
d70d94a
 
 
 
 
235263f
 
d70d94a
1059d82
d70d94a
 
9a17416
6627905
d70d94a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
language: en
license: apache-2.0
tags:
- text-classfication
- int8
- Intel® Neural Compressor
- neural-compressor
- PostTrainingStatic
datasets: 
- mrpc
metrics:
- f1
---

# INT8 BERT base uncased finetuned MRPC

### Post-training static quantization

This is an INT8  PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).

The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc).

The calibration dataloader is the train dataloader. The calibration sampling size is 1000.

The linear module **bert.encoder.layer.9.output.dense** falls back to fp32 to meet the 1% relative accuracy loss.

### Test result

|   |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.8959|0.9042|
| **Model size (MB)**  |119|418|

### Load with Intel® Neural Compressor:

```python
from optimum.intel.neural_compressor import IncQuantizedModelForSequenceClassification
int8_model = IncQuantizedModelForSequenceClassification.from_pretrained(
    'Intel/bert-base-uncased-mrpc-int8-static',
)
```