IlluminatiPudding
commited on
Commit
•
dd047ec
1
Parent(s):
e1edf66
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlaceDense-v3.zip +3 -0
- a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlaceDense-v3/data +101 -0
- a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/policy.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlaceDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlaceDense-v3
|
16 |
+
type: PandaPickAndPlaceDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -45.00 +/- 15.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlaceDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlaceDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlaceDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a056a3b7255a76f7ca0ca2058965870c4320cdbc7812c0304abbc465703903c
|
3 |
+
size 4464467
|
a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlaceDense-v3/data
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78a7d8cd69e0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x78a7d8cd2280>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAk0AAmWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"net_arch": [
|
16 |
+
512,
|
17 |
+
512
|
18 |
+
],
|
19 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
20 |
+
"optimizer_kwargs": {
|
21 |
+
"alpha": 0.99,
|
22 |
+
"eps": 1e-05,
|
23 |
+
"weight_decay": 0
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"num_timesteps": 100000,
|
27 |
+
"_total_timesteps": 100000,
|
28 |
+
"_num_timesteps_at_start": 0,
|
29 |
+
"seed": null,
|
30 |
+
"action_noise": null,
|
31 |
+
"start_time": 1700026124331962487,
|
32 |
+
"learning_rate": 0.0007,
|
33 |
+
"tensorboard_log": null,
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdDNJvlUckL/awhI+3gdGP+NMcT/vwRI+S9YKvrYCGr7vwRI+olECv4FfFT5OwxI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEA3Tv40fUz94M9Y9xCWSvfCbib0+q4e/iraEPo/WOz7UPIk/5i/DP3nyS79iz+g/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAK80g/gEkVvykVFr+yXJk+OQXnPhE3eD37vmq/dDNJvlUckL/awhI+iWkMPGZT+rxP/WS7ReHivOTNFL19g389ReTlOzYKDr2fd9C87KyXPrFItr9GKhC/6qA4PfCgLr4CgNs90KJqv94HRj/jTHE/78ESPqZoDzwyFPq87t0xu5ZK4bzCfxe9fYN/PVvk5TtBCg69DsHOvFxt7D6z0pu/BtoSv5oIzL6yeHi/G+VxPlGlar9L1gq+tgIavu/BEj571Q48kKr5vHBa8bsz1OG8jMkXvX2Dfz3k4+U7MwoOvQf717wtCDk/2Toev4PgE79L/EW9OX6bv+FRDj5/pWq/olECv4FfFT5OwxI+t+UOPBfH+rzIcoS7jyHnvE3oE73vxn49X0+VO3ElFL3iqtK8lGgOSwRLE4aUaBJ0lFKUdS4=",
|
37 |
+
"achieved_goal": "[[-0.19648534 -1.1258646 0.14332142]\n [ 0.77355754 0.94257945 0.14331792]\n [-0.13558309 -0.15040097 0.14331792]\n [-0.5090581 0.14587213 0.14332315]]",
|
38 |
+
"desired_goal": "[[-1.6488361 0.8247002 0.10459036]\n [-0.07136109 -0.06719196 -1.0599134 ]\n [ 0.25920516 0.18343566 1.0721688 ]\n [ 1.5248992 -0.7966686 1.8188288 ]]",
|
39 |
+
"observation": "[[ 0.7849585 -0.5831528 -0.5862604 0.29953533 0.45121172 0.06059939\n -0.91697663 -0.19648534 -1.1258646 0.14332142 0.00857008 -0.03055735\n -0.0034941 -0.02769531 -0.03632917 0.06238126 0.00701574 -0.03467771\n -0.02544766]\n [ 0.29624116 -1.4240934 -0.56314504 0.04507533 -0.1705358 0.10717775\n -0.9165468 0.77355754 0.94257945 0.14331792 0.00875298 -0.03052721\n -0.00271403 -0.02750139 -0.03698707 0.06238126 0.00701575 -0.03467775\n -0.02523854]\n [ 0.46177185 -1.2173675 -0.5736393 -0.39850312 -0.97059166 0.23622553\n -0.916585 -0.13558309 -0.15040097 0.14331792 0.00871789 -0.03047684\n -0.00736552 -0.027567 -0.03705744 0.06238126 0.00701569 -0.0346777\n -0.02636482]\n [ 0.722781 -0.61808544 -0.5776445 -0.04833631 -1.2147895 0.13898422\n -0.91658777 -0.5090581 0.14587213 0.14332315 0.00872176 -0.03061251\n -0.004042 -0.02821424 -0.03611021 0.06220144 0.00455658 -0.03616852\n -0.02571625]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAD2Qnvdg2TrwK16M8AAeuO9ITEb4K16M8JEwLPm0XoL0K16M8+uGNPai+vj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcOu7O8I23z041RA9wkWRvT0ypjxthEg+Yys0PdSpaj0K16M8pNaDPQmABb4K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAD2Qnvdg2TrwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAAHrjvSExG+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAkTAs+bRegvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA+uGNPai+vj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
48 |
+
"achieved_goal": "[[-0.04086691 -0.01258632 0.02 ]\n [ 0.00531089 -0.14167717 0.02 ]\n [ 0.13603264 -0.07816968 0.02 ]\n [ 0.06927867 0.09313709 0.02 ]]",
|
49 |
+
"desired_goal": "[[ 0.00573485 0.10899116 0.03535959]\n [-0.07093383 0.02028763 0.19581766]\n [ 0.04398669 0.05729087 0.02 ]\n [ 0.06437424 -0.13037123 0.02 ]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.0866908e-02\n -1.2586318e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.3108931e-03\n -1.4167717e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3603264e-01\n -7.8169681e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.9278672e-02\n 9.3137085e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCNE10knkT+MAWyUSzKMAXSUR0Bx2pqagElmdX2UKGgGR8AiMHIIWxhVaAdLMmgIR0Bx4t7IDHOsdX2UKGgGR8AZa6oVEd/8aAdLMmgIR0Bx4rgwXZXddX2UKGgGR8AuN7iyY5T7aAdLMmgIR0Bx6Gj1wo9cdX2UKGgGR8AMJptaY/mlaAdLMmgIR0Bx4zF+/gzhdX2UKGgGR8Abkyk9ECvHaAdLMmgIR0Bx63JJXhfjdX2UKGgGR8AspyimEXchaAdLMmgIR0Bx67XsgMc7dX2UKGgGR8AN3EbYK6WgaAdLMmgIR0Bx8ZLvkRzzdX2UKGgGR8BBnutnwob5aAdLMmgIR0Bx7FUWEbo9dX2UKGgGR8ArUXsPatcOaAdLMmgIR0Bx9JbILgGbdX2UKGgGR8AhZk0aZQYUaAdLMmgIR0Bx9LG7z06HdX2UKGgGR8AKoxpL26ClaAdLMmgIR0Bx+nZkCmuUdX2UKGgGR8AhA99MK1G9aAdLMmgIR0Bx9UVXV9WqdX2UKGgGR8AY1w++ueSTaAdLMmgIR0Bx/Ywwj+rEdX2UKGgGR8Ad0nRb8m8eaAdLMmgIR0Bx/Wnm7rcCdX2UKGgGR8AhOrI5o4+9aAdLMmgIR0ByAv1Fpfx+dX2UKGgGR8AVFOCXhOxjaAdLMmgIR0Bx/cqSX+l1dX2UKGgGR8AqCN83Mpw0aAdLMmgIR0ByBgqPOpsHdX2UKGgGR8Ad98Rcu8K5aAdLMmgIR0ByBoiyIHkcdX2UKGgGR8AoS1EVnEl3aAdLMmgIR0ByDO8qWkaddX2UKGgGR8AhQMIeHSF5aAdLMmgIR0ByB8M4LkS3dX2UKGgGR8AjgFwkxASnaAdLMmgIR0ByEBpEhJRPdX2UKGgGR8Aj/j8UEgW8aAdLMmgIR0ByESUHIIWydX2UKGgGR8AiIoOQQtjDaAdLMmgIR0ByF0f/3nIRdX2UKGgGR8A3eKyv9tMxaAdLMmgIR0ByEhYq5LAYdX2UKGgGR8ArxGyX2M86aAdLMmgIR0ByGllXiiqRdX2UKGgGR8AgE8IRh+fAaAdLMmgIR0ByGxfMOf/WdX2UKGgGR8AhU79Q40djaAdLMmgIR0ByIQob4rSWdX2UKGgGR8Ah5z+3pfQbaAdLMmgIR0ByG9jCpFTedX2UKGgGR8Athv1lGwzMaAdLMmgIR0ByJCBDohZAdX2UKGgGR8Am+R3/xUedaAdLMmgIR0ByJHJOnEVGdX2UKGgGR8AfKMDOkcjraAdLMmgIR0ByKmfywwCbdX2UKGgGR8AhfHjp9qk/aAdLMmgIR0ByJTUYsNDudX2UKGgGR8AfbvKEFnqWaAdLMmgIR0ByLXbCaZx8dX2UKGgGR8ARKl7+kxh2aAdLMmgIR0ByLvuuzQeFdX2UKGgGR8AgKob4rSVoaAdLMmgIR0ByNVBv73wkdX2UKGgGR8AiSSTyJ9ApaAdLMmgIR0ByMDAj6eoUdX2UKGgGR8AVGUMXrMTwaAdLMmgIR0ByOHVNHpbEdX2UKGgGR8AmDwEyLyc1aAdLMmgIR0ByOXGACnxbdX2UKGgGR8Aq50ulGgBcaAdLMmgIR0ByQAEkjX4CdX2UKGgGR8Aozj7Q9ic5aAdLMmgIR0ByOtbkfcN6dX2UKGgGR8AWesT37DVIaAdLMmgIR0ByQxpL26CldX2UKGgGR8AgYyN4qwyJaAdLMmgIR0ByRIq3EyckdX2UKGgGR8AGq/fwZwXJaAdLMmgIR0BySxLPD50sdX2UKGgGR8Atbq1PWQOnaAdLMmgIR0ByRe3kPtladX2UKGgGR8An6Ad4mkWRaAdLMmgIR0ByTjUQTVUddX2UKGgGR8AmHcSoOx0NaAdLMmgIR0ByT6lchTwVdX2UKGgGR8A43LIxQBPsaAdLMmgIR0ByVXWqcVgydX2UKGgGR8ApffkWAPNFaAdLMmgIR0ByUD7k4m1IdX2UKGgGR8Apylu3trsTaAdLMmgIR0ByWIHxBmf5dX2UKGgGR8AnWwGGEf1ZaAdLMmgIR0ByXk0TDfm+dX2UKGgGR8AJW9nK4hECaAdLMmgIR0ByaDT+ee4DdX2UKGgGR8AnTkXDWK/EaAdLMmgIR0ByY03WFvhqdX2UKGgGR8AlAU0vXbudaAdLMmgIR0Bya6YCyQgcdX2UKGgGR8AUeMir1dxAaAdLMmgIR0BycljqfOD8dX2UKGgGR8AIrUiILw4LaAdLMmgIR0ByfBmVZ9uxdX2UKGgGR8AqJPzFuNxVaAdLMmgIR0Bydz56+nIidX2UKGgGR8AjFLQokRjCaAdLMmgIR0Byf5UsFt9AdX2UKGgGR8AhXRJmNBGAaAdLMmgIR0ByhZ42S+xodX2UKGgGR8ANY3R5TqB3aAdLMmgIR0Byjq6NEPUbdX2UKGgGR8AmNpj+aScLaAdLMmgIR0ByicPkJa7mdX2UKGgGR8AFb+Lm6oVEaAdLMmgIR0Bykhm4AjptdX2UKGgGR7+l4zJp35eraAdLAWgIR0BykmDmKZUldX2UKGgGR8ArgmXw9aEBaAdLMmgIR0BymZb2USqVdX2UKGgGR8Ajjh7VrhzeaAdLMmgIR0ByozF85S3tdX2UKGgGR8AfLqB3A2ycaAdLMmgIR0Bynj1VYISldX2UKGgGR8AFiMHbAUL2aAdLMmgIR0ByptT3qRlpdX2UKGgGR8AbKmj0th/iaAdLMmgIR0ByqKz/p+tsdX2UKGgGR8AZA30f5k9VaAdLMmgIR0Byryb7TDwZdX2UKGgGR8AonZPl+3H8aAdLMmgIR0Byqf7yhBZ7dX2UKGgGR8Ah7anJkoWpaAdLMmgIR0BysnFBIFvAdX2UKGgGR8AnrPxhDw6RaAdLMmgIR0Bys+mzjWCmdX2UKGgGR8Avi8J2MbWFaAdLMmgIR0ByukIWxhUjdX2UKGgGR8AhHphWo3rEaAdLMmgIR0BytR2ki2UjdX2UKGgGR8AuKtBfKISEaAdLMmgIR0ByvaPJaJQ+dX2UKGgGR8AaDogV45cUaAdLMmgIR0ByvlEQXhwVdX2UKGgGR8Av0s6JZW7waAdLMmgIR0ByxJVinYQKdX2UKGgGR8AbYFHJ9y93aAdLMmgIR0Byv14mkWRBdX2UKGgGR8AZMTi83++/aAdLMmgIR0Byx8cp9ZzQdX2UKGgGR8AlXj8UEgW8aAdLMmgIR0ByyO2sq8UVdX2UKGgGR8AUVj+aScLCaAdLMmgIR0ByzyfmLcbjdX2UKGgGR8AGsIToMa0haAdLMmgIR0ByyfIHTqjadX2UKGgGR8AOTEJjUd7waAdLMmgIR0By0nA+IMz/dX2UKGgGR8AlgYWLxZuAaAdLMmgIR0By00PkJa7mdX2UKGgGR8AWVzfaYeDGaAdLMmgIR0By2TEm6XjVdX2UKGgGR8AdXuVopQUIaAdLMmgIR0By0/mvGIbgdX2UKGgGR8Acp9kSVW0aaAdLMmgIR0By3Gcf/3nIdX2UKGgGR8AgRh7VrhzeaAdLMmgIR0By3hK+SKWLdX2UKGgGR8ASQQyyleniaAdLMmgIR0By5DVe8f3fdX2UKGgGR8AMgCSzPa+OaAdLMmgIR0By3wF2V3UydX2UKGgGR8AZVjriVB2PaAdLMmgIR0By53/GVAzIdX2UKGgGR8AiTBYV6/qPaAdLMmgIR0By59OfukULdX2UKGgGR7+UiD/VAiV0aAdLAWgIR0By5//0dzXCdX2UKGgGR8Ab8aNuLrHEaAdLMmgIR0By7ap++dsjdX2UKGgGR8AWLAKv3ai9aAdLMmgIR0By6HfaYeDGdX2UKGgGR8A5OvGp++dtaAdLMmgIR0By8OHrQgLadX2UKGgGR8AaI1YQrc0taAdLMmgIR0By8cdU83dcdX2UKGgGR8AdxVaOgg5jaAdLMmgIR0By95opQUHqdX2UKGgGR8AdunuRcNYsaAdLMmgIR0By8mKTB68hdX2UKGgGR8Ax6pLEk0JoaAdLMmgIR0By+uMCLdeqdWUu"
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 1250,
|
66 |
+
"n_steps": 20,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 0.95,
|
69 |
+
"ent_coef": 0.01,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": true,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
84 |
+
"dtype": "float32",
|
85 |
+
"bounded_below": "[ True True True True]",
|
86 |
+
"bounded_above": "[ True True True True]",
|
87 |
+
"_shape": [
|
88 |
+
4
|
89 |
+
],
|
90 |
+
"low": "[-1. -1. -1. -1.]",
|
91 |
+
"high": "[1. 1. 1. 1.]",
|
92 |
+
"low_repr": "-1.0",
|
93 |
+
"high_repr": "1.0",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 4,
|
97 |
+
"lr_schedule": {
|
98 |
+
":type:": "<class 'function'>",
|
99 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
100 |
+
}
|
101 |
+
}
|
a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e65c7ee9afeadc9bfd4a5bce01f7c91b004381c4f286acbe2a0bd86face9256
|
3 |
+
size 2222191
|
a2c-PandaPickAndPlaceDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37abc482cca9f0dd144427af5952906df54f63d0f76fd4d262850832badbf86a
|
3 |
+
size 2223471
|
a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaPickAndPlaceDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78a7d8cd69e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78a7d8cd2280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAk0AAmWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [512, 512], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700026124331962487, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdDNJvlUckL/awhI+3gdGP+NMcT/vwRI+S9YKvrYCGr7vwRI+olECv4FfFT5OwxI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEA3Tv40fUz94M9Y9xCWSvfCbib0+q4e/iraEPo/WOz7UPIk/5i/DP3nyS79iz+g/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAK80g/gEkVvykVFr+yXJk+OQXnPhE3eD37vmq/dDNJvlUckL/awhI+iWkMPGZT+rxP/WS7ReHivOTNFL19g389ReTlOzYKDr2fd9C87KyXPrFItr9GKhC/6qA4PfCgLr4CgNs90KJqv94HRj/jTHE/78ESPqZoDzwyFPq87t0xu5ZK4bzCfxe9fYN/PVvk5TtBCg69DsHOvFxt7D6z0pu/BtoSv5oIzL6yeHi/G+VxPlGlar9L1gq+tgIavu/BEj571Q48kKr5vHBa8bsz1OG8jMkXvX2Dfz3k4+U7MwoOvQf717wtCDk/2Toev4PgE79L/EW9OX6bv+FRDj5/pWq/olECv4FfFT5OwxI+t+UOPBfH+rzIcoS7jyHnvE3oE73vxn49X0+VO3ElFL3iqtK8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.19648534 -1.1258646 0.14332142]\n [ 0.77355754 0.94257945 0.14331792]\n [-0.13558309 -0.15040097 0.14331792]\n [-0.5090581 0.14587213 0.14332315]]", "desired_goal": "[[-1.6488361 0.8247002 0.10459036]\n [-0.07136109 -0.06719196 -1.0599134 ]\n [ 0.25920516 0.18343566 1.0721688 ]\n [ 1.5248992 -0.7966686 1.8188288 ]]", "observation": "[[ 0.7849585 -0.5831528 -0.5862604 0.29953533 0.45121172 0.06059939\n -0.91697663 -0.19648534 -1.1258646 0.14332142 0.00857008 -0.03055735\n -0.0034941 -0.02769531 -0.03632917 0.06238126 0.00701574 -0.03467771\n -0.02544766]\n [ 0.29624116 -1.4240934 -0.56314504 0.04507533 -0.1705358 0.10717775\n -0.9165468 0.77355754 0.94257945 0.14331792 0.00875298 -0.03052721\n -0.00271403 -0.02750139 -0.03698707 0.06238126 0.00701575 -0.03467775\n -0.02523854]\n [ 0.46177185 -1.2173675 -0.5736393 -0.39850312 -0.97059166 0.23622553\n -0.916585 -0.13558309 -0.15040097 0.14331792 0.00871789 -0.03047684\n -0.00736552 -0.027567 -0.03705744 0.06238126 0.00701569 -0.0346777\n -0.02636482]\n [ 0.722781 -0.61808544 -0.5776445 -0.04833631 -1.2147895 0.13898422\n -0.91658777 -0.5090581 0.14587213 0.14332315 0.00872176 -0.03061251\n -0.004042 -0.02821424 -0.03611021 0.06220144 0.00455658 -0.03616852\n -0.02571625]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAD2Qnvdg2TrwK16M8AAeuO9ITEb4K16M8JEwLPm0XoL0K16M8+uGNPai+vj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcOu7O8I23z041RA9wkWRvT0ypjxthEg+Yys0PdSpaj0K16M8pNaDPQmABb4K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAD2Qnvdg2TrwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAAHrjvSExG+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAkTAs+bRegvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA+uGNPai+vj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.04086691 -0.01258632 0.02 ]\n [ 0.00531089 -0.14167717 0.02 ]\n [ 0.13603264 -0.07816968 0.02 ]\n [ 0.06927867 0.09313709 0.02 ]]", "desired_goal": "[[ 0.00573485 0.10899116 0.03535959]\n [-0.07093383 0.02028763 0.19581766]\n [ 0.04398669 0.05729087 0.02 ]\n [ 0.06437424 -0.13037123 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.0866908e-02\n -1.2586318e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.3108931e-03\n -1.4167717e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3603264e-01\n -7.8169681e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.9278672e-02\n 9.3137085e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCNE10knkT+MAWyUSzKMAXSUR0Bx2pqagElmdX2UKGgGR8AiMHIIWxhVaAdLMmgIR0Bx4t7IDHOsdX2UKGgGR8AZa6oVEd/8aAdLMmgIR0Bx4rgwXZXddX2UKGgGR8AuN7iyY5T7aAdLMmgIR0Bx6Gj1wo9cdX2UKGgGR8AMJptaY/mlaAdLMmgIR0Bx4zF+/gzhdX2UKGgGR8Abkyk9ECvHaAdLMmgIR0Bx63JJXhfjdX2UKGgGR8AspyimEXchaAdLMmgIR0Bx67XsgMc7dX2UKGgGR8AN3EbYK6WgaAdLMmgIR0Bx8ZLvkRzzdX2UKGgGR8BBnutnwob5aAdLMmgIR0Bx7FUWEbo9dX2UKGgGR8ArUXsPatcOaAdLMmgIR0Bx9JbILgGbdX2UKGgGR8AhZk0aZQYUaAdLMmgIR0Bx9LG7z06HdX2UKGgGR8AKoxpL26ClaAdLMmgIR0Bx+nZkCmuUdX2UKGgGR8AhA99MK1G9aAdLMmgIR0Bx9UVXV9WqdX2UKGgGR8AY1w++ueSTaAdLMmgIR0Bx/Ywwj+rEdX2UKGgGR8Ad0nRb8m8eaAdLMmgIR0Bx/Wnm7rcCdX2UKGgGR8AhOrI5o4+9aAdLMmgIR0ByAv1Fpfx+dX2UKGgGR8AVFOCXhOxjaAdLMmgIR0Bx/cqSX+l1dX2UKGgGR8AqCN83Mpw0aAdLMmgIR0ByBgqPOpsHdX2UKGgGR8Ad98Rcu8K5aAdLMmgIR0ByBoiyIHkcdX2UKGgGR8AoS1EVnEl3aAdLMmgIR0ByDO8qWkaddX2UKGgGR8AhQMIeHSF5aAdLMmgIR0ByB8M4LkS3dX2UKGgGR8AjgFwkxASnaAdLMmgIR0ByEBpEhJRPdX2UKGgGR8Aj/j8UEgW8aAdLMmgIR0ByESUHIIWydX2UKGgGR8AiIoOQQtjDaAdLMmgIR0ByF0f/3nIRdX2UKGgGR8A3eKyv9tMxaAdLMmgIR0ByEhYq5LAYdX2UKGgGR8ArxGyX2M86aAdLMmgIR0ByGllXiiqRdX2UKGgGR8AgE8IRh+fAaAdLMmgIR0ByGxfMOf/WdX2UKGgGR8AhU79Q40djaAdLMmgIR0ByIQob4rSWdX2UKGgGR8Ah5z+3pfQbaAdLMmgIR0ByG9jCpFTedX2UKGgGR8Athv1lGwzMaAdLMmgIR0ByJCBDohZAdX2UKGgGR8Am+R3/xUedaAdLMmgIR0ByJHJOnEVGdX2UKGgGR8AfKMDOkcjraAdLMmgIR0ByKmfywwCbdX2UKGgGR8AhfHjp9qk/aAdLMmgIR0ByJTUYsNDudX2UKGgGR8AfbvKEFnqWaAdLMmgIR0ByLXbCaZx8dX2UKGgGR8ARKl7+kxh2aAdLMmgIR0ByLvuuzQeFdX2UKGgGR8AgKob4rSVoaAdLMmgIR0ByNVBv73wkdX2UKGgGR8AiSSTyJ9ApaAdLMmgIR0ByMDAj6eoUdX2UKGgGR8AVGUMXrMTwaAdLMmgIR0ByOHVNHpbEdX2UKGgGR8AmDwEyLyc1aAdLMmgIR0ByOXGACnxbdX2UKGgGR8Aq50ulGgBcaAdLMmgIR0ByQAEkjX4CdX2UKGgGR8Aozj7Q9ic5aAdLMmgIR0ByOtbkfcN6dX2UKGgGR8AWesT37DVIaAdLMmgIR0ByQxpL26CldX2UKGgGR8AgYyN4qwyJaAdLMmgIR0ByRIq3EyckdX2UKGgGR8AGq/fwZwXJaAdLMmgIR0BySxLPD50sdX2UKGgGR8Atbq1PWQOnaAdLMmgIR0ByRe3kPtladX2UKGgGR8An6Ad4mkWRaAdLMmgIR0ByTjUQTVUddX2UKGgGR8AmHcSoOx0NaAdLMmgIR0ByT6lchTwVdX2UKGgGR8A43LIxQBPsaAdLMmgIR0ByVXWqcVgydX2UKGgGR8ApffkWAPNFaAdLMmgIR0ByUD7k4m1IdX2UKGgGR8Apylu3trsTaAdLMmgIR0ByWIHxBmf5dX2UKGgGR8AnWwGGEf1ZaAdLMmgIR0ByXk0TDfm+dX2UKGgGR8AJW9nK4hECaAdLMmgIR0ByaDT+ee4DdX2UKGgGR8AnTkXDWK/EaAdLMmgIR0ByY03WFvhqdX2UKGgGR8AlAU0vXbudaAdLMmgIR0Bya6YCyQgcdX2UKGgGR8AUeMir1dxAaAdLMmgIR0BycljqfOD8dX2UKGgGR8AIrUiILw4LaAdLMmgIR0ByfBmVZ9uxdX2UKGgGR8AqJPzFuNxVaAdLMmgIR0Bydz56+nIidX2UKGgGR8AjFLQokRjCaAdLMmgIR0Byf5UsFt9AdX2UKGgGR8AhXRJmNBGAaAdLMmgIR0ByhZ42S+xodX2UKGgGR8ANY3R5TqB3aAdLMmgIR0Byjq6NEPUbdX2UKGgGR8AmNpj+aScLaAdLMmgIR0ByicPkJa7mdX2UKGgGR8AFb+Lm6oVEaAdLMmgIR0Bykhm4AjptdX2UKGgGR7+l4zJp35eraAdLAWgIR0BykmDmKZUldX2UKGgGR8ArgmXw9aEBaAdLMmgIR0BymZb2USqVdX2UKGgGR8Ajjh7VrhzeaAdLMmgIR0ByozF85S3tdX2UKGgGR8AfLqB3A2ycaAdLMmgIR0Bynj1VYISldX2UKGgGR8AFiMHbAUL2aAdLMmgIR0ByptT3qRlpdX2UKGgGR8AbKmj0th/iaAdLMmgIR0ByqKz/p+tsdX2UKGgGR8AZA30f5k9VaAdLMmgIR0Byryb7TDwZdX2UKGgGR8AonZPl+3H8aAdLMmgIR0Byqf7yhBZ7dX2UKGgGR8Ah7anJkoWpaAdLMmgIR0BysnFBIFvAdX2UKGgGR8AnrPxhDw6RaAdLMmgIR0Bys+mzjWCmdX2UKGgGR8Avi8J2MbWFaAdLMmgIR0ByukIWxhUjdX2UKGgGR8AhHphWo3rEaAdLMmgIR0BytR2ki2UjdX2UKGgGR8AuKtBfKISEaAdLMmgIR0ByvaPJaJQ+dX2UKGgGR8AaDogV45cUaAdLMmgIR0ByvlEQXhwVdX2UKGgGR8Av0s6JZW7waAdLMmgIR0ByxJVinYQKdX2UKGgGR8AbYFHJ9y93aAdLMmgIR0Byv14mkWRBdX2UKGgGR8AZMTi83++/aAdLMmgIR0Byx8cp9ZzQdX2UKGgGR8AlXj8UEgW8aAdLMmgIR0ByyO2sq8UVdX2UKGgGR8AUVj+aScLCaAdLMmgIR0ByzyfmLcbjdX2UKGgGR8AGsIToMa0haAdLMmgIR0ByyfIHTqjadX2UKGgGR8AOTEJjUd7waAdLMmgIR0By0nA+IMz/dX2UKGgGR8AlgYWLxZuAaAdLMmgIR0By00PkJa7mdX2UKGgGR8AWVzfaYeDGaAdLMmgIR0By2TEm6XjVdX2UKGgGR8AdXuVopQUIaAdLMmgIR0By0/mvGIbgdX2UKGgGR8Acp9kSVW0aaAdLMmgIR0By3Gcf/3nIdX2UKGgGR8AgRh7VrhzeaAdLMmgIR0By3hK+SKWLdX2UKGgGR8ASQQyyleniaAdLMmgIR0By5DVe8f3fdX2UKGgGR8AMgCSzPa+OaAdLMmgIR0By3wF2V3UydX2UKGgGR8AZVjriVB2PaAdLMmgIR0By53/GVAzIdX2UKGgGR8AiTBYV6/qPaAdLMmgIR0By59OfukULdX2UKGgGR7+UiD/VAiV0aAdLAWgIR0By5//0dzXCdX2UKGgGR8Ab8aNuLrHEaAdLMmgIR0By7ap++dsjdX2UKGgGR8AWLAKv3ai9aAdLMmgIR0By6HfaYeDGdX2UKGgGR8A5OvGp++dtaAdLMmgIR0By8OHrQgLadX2UKGgGR8AaI1YQrc0taAdLMmgIR0By8cdU83dcdX2UKGgGR8AdxVaOgg5jaAdLMmgIR0By95opQUHqdX2UKGgGR8AdunuRcNYsaAdLMmgIR0By8mKTB68hdX2UKGgGR8Ax6pLEk0JoaAdLMmgIR0By+uMCLdeqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1250, "n_steps": 20, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (831 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-15T05:35:49.393373"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23daa0d24af0c6a52bdf16d688206f06cf8a5372f85d11e67adbce7f6c248dbe
|
3 |
+
size 3013
|