IlluminatiPudding
commited on
Commit
•
a319158
1
Parent(s):
01e4316
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlaceDense-v3.zip +3 -0
- a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlaceDense-v3/data +102 -0
- a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/policy.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlaceDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlaceDense-v3
|
16 |
+
type: PandaPickAndPlaceDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlaceDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlaceDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlaceDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f9ab8e13ecf45683c65ed349feae61e508d89dfc8db176d2be971fe1cbc52d2
|
3 |
+
size 2253393
|
a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlaceDense-v3/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e94a4cb5d80>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e94a4cb25c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"net_arch": [
|
16 |
+
256,
|
17 |
+
256,
|
18 |
+
256
|
19 |
+
],
|
20 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
21 |
+
"optimizer_kwargs": {
|
22 |
+
"alpha": 0.99,
|
23 |
+
"eps": 1e-05,
|
24 |
+
"weight_decay": 0
|
25 |
+
}
|
26 |
+
},
|
27 |
+
"num_timesteps": 1500000,
|
28 |
+
"_total_timesteps": 1500000.0,
|
29 |
+
"_num_timesteps_at_start": 0,
|
30 |
+
"seed": null,
|
31 |
+
"action_noise": null,
|
32 |
+
"start_time": 1700123016568054906,
|
33 |
+
"learning_rate": 0.001,
|
34 |
+
"tensorboard_log": null,
|
35 |
+
"_last_obs": {
|
36 |
+
":type:": "<class 'collections.OrderedDict'>",
|
37 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+v6cP23GQ79aS8M9YfpWP/+2mzxUTMM9T5b7PWI5DD8IT8M9xPJVP0zaSEDmRsM9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApDmDv/ifn774RIq/F558v526nj9XjRU/HxBjP/6wwr/Jd5s+bKvaPGNVsT9kz029lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABBHJw+zLMpPkjIdr/hXeU+XjAUv9FMZL47YS4/+v6cP23GQ79aS8M9Lb8dPBaMVLyW5Qy8eyU5PWGgPLwSGCE9L3soPEegM7tt70Y7rYmRv2Cc4D/ctnq/hw2av4S3PD+pwg4+qFiav2H6Vj//tps8VEzDPZnrHDz3sVG8MX7rux2kOj0NP0W8FhghPfN6KDzToDO7+o9zOxiTWD/8ynu/zSruPWHqWL8jYsm/gnw+P/NaaD9Plvs9YjkMPwhPwz1A5Rk8hkZSvEDR9bvwqDk9Zes1vBYYIT3neig88p8zu+78YDtlAr4+mpSlvnWiqL6/lLw/9TpWvzqWvj8IMmk/xPJVP0zaSEDmRsM9wmEaPFhfW7zEzN7AkBA4PYmSPLwWGCE903ooPIugM7v+31M7lGgOSwRLE4aUaBJ0lFKUdS4=",
|
38 |
+
"achieved_goal": "[[ 1.2265313 -0.7647465 0.09535857]\n [ 0.839758 0.01900816 0.09536043]\n [ 0.12284528 0.5477506 0.09536558]\n [ 0.83573556 3.1383238 0.09535007]]",
|
39 |
+
"desired_goal": "[[-1.0251966 -0.31176734 -1.0802298 ]\n [-0.98678726 1.24007 0.5841879 ]\n [ 0.88696474 -1.5210264 0.30364826]\n [ 0.02669307 1.3854183 -0.05024661]]",
|
40 |
+
"observation": "[[ 3.04903060e-01 1.65724933e-01 -9.63993549e-01 4.47981864e-01\n -5.78863025e-01 -2.22949281e-01 6.81171119e-01 1.22653127e+00\n -7.64746487e-01 9.53585654e-02 9.62809939e-03 -1.29728522e-02\n -8.59965943e-03 4.52017598e-02 -1.15128467e-02 3.93295959e-02\n 1.02832755e-02 -2.74087652e-03 3.03551112e-03]\n [-1.13701403e+00 1.75477219e+00 -9.79352713e-01 -1.20353782e+00\n 7.37175226e-01 1.39414445e-01 -1.20583057e+00 8.39757979e-01\n 1.90081578e-02 9.53604281e-02 9.57765523e-03 -1.27987778e-02\n -7.18667405e-03 4.55666669e-02 -1.20389583e-02 3.93296108e-02\n 1.02832196e-02 -2.74090911e-03 3.71646741e-03]\n [ 8.45994473e-01 -9.83566046e-01 1.16292574e-01 -8.47326338e-01\n -1.57330739e+00 7.44087338e-01 9.07637775e-01 1.22845285e-01\n 5.47750592e-01 9.53655839e-02 9.39303637e-03 -1.28341969e-02\n -7.50175118e-03 4.53271270e-02 -1.11034857e-02 3.93296108e-02\n 1.02832085e-02 -2.74085673e-03 3.43304453e-03]\n [ 3.71112019e-01 -3.23399365e-01 -3.29364449e-01 1.47328937e+00\n -8.36837113e-01 1.48895955e+00 9.10919666e-01 8.35735559e-01\n 3.13832378e+00 9.53500718e-02 9.42272134e-03 -1.33894309e-02\n -6.96249580e+00 4.49376702e-02 -1.15095461e-02 3.93296108e-02\n 1.02831898e-02 -2.74089235e-03 3.23295547e-03]]"
|
41 |
+
},
|
42 |
+
"_last_episode_starts": {
|
43 |
+
":type:": "<class 'numpy.ndarray'>",
|
44 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
45 |
+
},
|
46 |
+
"_last_original_obs": {
|
47 |
+
":type:": "<class 'collections.OrderedDict'>",
|
48 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtIdNvZa8PDsK16M8Sm7+vagbPj0K16M8+cn4PWpipL0K16M8pFYDPkoY9z0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAg6APcVy2j0K16M8TQXwvFnbHrxyaOE92qDhPZF6Qr2zBFM+HAGTvAzJ/D02KdE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtIdNvZa8PDsK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEpu/r2oGz49CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD5yfg9amKkvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApFYDPkoY9z0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
49 |
+
"achieved_goal": "[[-0.05017824 0.00287989 0.02 ]\n [-0.1242338 0.04641309 0.02 ]\n [ 0.12147898 -0.08026583 0.02 ]\n [ 0.1282602 0.1206518 0.02 ]]",
|
50 |
+
"desired_goal": "[[ 0.06252672 0.10666422 0.02 ]\n [-0.0292994 -0.00969585 0.11006249]\n [ 0.11017008 -0.04748017 0.20607261]\n [-0.01794486 0.12343034 0.10212938]]",
|
51 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.0178245e-02\n 2.8798929e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2423380e-01\n 4.6413094e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2147898e-01\n -8.0265835e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2826020e-01\n 1.2065180e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
52 |
+
},
|
53 |
+
"_episode_num": 0,
|
54 |
+
"use_sde": false,
|
55 |
+
"sde_sample_freq": -1,
|
56 |
+
"_current_progress_remaining": 0.0,
|
57 |
+
"_stats_window_size": 100,
|
58 |
+
"ep_info_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwC1Fr6+FlCmMAWyUSzKMAXSUR0CyxA39itq6dX2UKGgGR8AgZta6jFhoaAdLMmgIR0Cyw7vCMxXXdX2UKGgGR8ASIyfthNM5aAdLMmgIR0CyxBipiqhldX2UKGgGR8Aqpn6Eal1saAdLMmgIR0CyxEUBfa6CdX2UKGgGR8AivU0elsP8aAdLMmgIR0CyxJXw5NoKdX2UKGgGR8AhW7T2FnIyaAdLMmgIR0CyxEp2U0N0dX2UKGgGR8AKQdp7CzkZaAdLMmgIR0CyxKGsq8UVdX2UKGgGR8Aqo9OARTS9aAdLMmgIR0CyxM31e0HAdX2UKGgGR8AX9VXFLnLaaAdLMmgIR0CyxRi4nWrfdX2UKGgGR8AjIf+S8rZraAdLMmgIR0CyxMZ80DU3dX2UKGgGR8AYgmPYFqzraAdLMmgIR0CyxSSj1wo9dX2UKGgGR8AQVi7TUiIMaAdLMmgIR0CyxVJlJ6IFdX2UKGgGR8AwMYVIqbz9aAdLMmgIR0CyxaP/io87dX2UKGgGR8AlEc81XNkfaAdLMmgIR0CyxVdoSL62dX2UKGgGR8AT/IFNcnmaaAdLMmgIR0CyxbAqd6LPdX2UKGgGR8AZDf1pTMq0aAdLMmgIR0Cyxd6iTMaCdX2UKGgGR8AZ3u/k/8l5aAdLMmgIR0Cyxir04BFNdX2UKGgGR8AkYSOinHeaaAdLMmgIR0CyxdzV6NVBdX2UKGgGR8AkxJ7LMcIaaAdLMmgIR0CyxjwaR6njdX2UKGgGR8AquPWhAWzoaAdLMmgIR0CyxmgIMSbpdX2UKGgGR8AHlw1ivxH5aAdLMmgIR0CyxrkLpiZwdX2UKGgGR8AediYsunMuaAdLMmgIR0Cyxm5tvXK9dX2UKGgGR8AknnqVyFPBaAdLMmgIR0Cyxs2jO9nLdX2UKGgGR8AuT4bCJoCdaAdLMmgIR0Cyxv2Kl54XdX2UKGgGR8AwvYIjW07baAdLMmgIR0Cyx0nskY4ydX2UKGgGR8AoTqv/zasZaAdLMmgIR0Cyxvv6be/IdX2UKGgGR8AqdSv1UVBVaAdLMmgIR0Cyx1ZzDGcXdX2UKGgGR8AqETnq3VkMaAdLMmgIR0Cyx4IgV45cdX2UKGgGR8AsnhMJx//eaAdLMmgIR0Cyx87BTGYKdX2UKGgGR8AkZvcafjCIaAdLMmgIR0Cyx4IfwI+odX2UKGgGR8ARgPrfLs8gaAdLMmgIR0Cyx9uGj9GadX2UKGgGR8AjN9Brvb48aAdLMmgIR0CyyAj0g8r7dX2UKGgGR8AiPgtOEdvLaAdLMmgIR0CyyFVQhwERdX2UKGgGR8AnYOI68xsVaAdLMmgIR0CyyAfYe1a4dX2UKGgGR8AcC4wyqMm4aAdLMmgIR0CyyGJTqB3BdX2UKGgGR8AMSq+8Gs3iaAdLMmgIR0CyyI28Zk08dX2UKGgGR8AS96kZaV2SaAdLMmgIR0CyyNpVjqfOdX2UKGgGR8AogtK7I1cdaAdLMmgIR0CyyIcjVx0ddX2UKGgGR8ARdfAsTWXkaAdLMmgIR0CyyOLsv7FbdX2UKGgGR8AiyUu+RHPNaAdLMmgIR0CyyRDHbRF7dX2UKGgGR8Am5RVIZqEfaAdLMmgIR0CyyV5xNqQBdX2UKGgGR8AmVvQ4S6DoaAdLMmgIR0CyyRSlnAZbdX2UKGgGR8AqgKVpsXSCaAdLMmgIR0CyyYXOSntOdX2UKGgGR8AHF/c32mHhaAdLMmgIR0CyybicLBsRdX2UKGgGR8BO5BXjlxOtaAdLMmgIR0CyyhQS39aVdX2UKGgGR8ApEOkLx7RfaAdLMmgIR0Cyyd8lsxfwdX2UKGgGR8AkJn6l+EytaAdLMmgIR0CyylXlfZ27dX2UKGgGR8Aq/jghr30xaAdLMmgIR0CyyowsoUi7dX2UKGgGR8An2peeFtbcaAdLMmgIR0Cyyub3wkPddX2UKGgGR8AWKJMxoIv8aAdLMmgIR0CyyrKaCtihdX2UKGgGR8Alw3Ov+wTuaAdLMmgIR0CyyyiU5dWydX2UKGgGR8AkPmI0qH45aAdLMmgIR0Cyy1u9i+cpdX2UKGgGR8AYHN+so2GZaAdLMmgIR0Cyy7rcsUZfdX2UKGgGR8AdylyimEXdaAdLMmgIR0Cyy5erp7kXdX2UKGgGR8AlrVYISlFdaAdLMmgIR0CyzBD94u9OdX2UKGgGR8AGzhNucc2jaAdLMmgIR0CyzEY1tO2zdX2UKGgGR8AlpJYkmhM8aAdLMmgIR0CyzKbUsnRcdX2UKGgGR8AiGOPvKEFoaAdLMmgIR0CyzHKlP8AJdX2UKGgGR8AZUYXO4XoDaAdLMmgIR0CyzO05dWyUdX2UKGgGR8Awj0se4kNXaAdLMmgIR0CyzSLGNrCWdX2UKGgGR8Ac3kvK2a2GaAdLMmgIR0CyzYKXWvr4dX2UKGgGR8AlTglWwNb1aAdLMmgIR0CyzVYzrNW3dX2UKGgGR8AlshzNliBoaAdLMmgIR0CyzcyhJyyVdX2UKGgGR8ATBDSgGr0baAdLMmgIR0CyzgK9sabXdX2UKGgGR8AsL/dZaFEiaAdLMmgIR0CyzmLHEMspdX2UKGgGR7+pSiudPLxJaAdLAWgIR0CyzmhzJZGKdX2UKGgGR8AYYEV32VVxaAdLMmgIR0CyzjnBHkLhdX2UKGgGR8AlYTL4etCBaAdLMmgIR0CyzpZjhDPXdX2UKGgGR8Ami2itaIN3aAdLMmgIR0CyzsDTz/ZNdX2UKGgGR8AqOfA9FF2FaAdLMmgIR0CyzxAV0tAcdX2UKGgGR8AwQblA/s3RaAdLMmgIR0Cyzr9PHktFdX2UKGgGR8AoHS9/SYw7aAdLMmgIR0CyzxgsGxD9dX2UKGgGR8Arq176YVqOaAdLMmgIR0Cyz0d5hSccdX2UKGgGR8Ahjph4MWoFaAdLMmgIR0Cyz5WgWac7dX2UKGgGR8Ah4HY6GQCCaAdLMmgIR0Cyz0eLehwmdX2UKGgGR8AZYZeiSJTEaAdLMmgIR0Cyz6UY0l7ddX2UKGgGR8AKVO6/Zdv9aAdLMmgIR0Cyz9BODaoNdX2UKGgGR8Afn7hvR7Z4aAdLMmgIR0Cy0CBDohZAdX2UKGgGR8Afl7x/d69kaAdLMmgIR0Cyz8yBPKuCdX2UKGgGR8Awqm6oVEeAaAdLMmgIR0Cy0CY/7iyZdX2UKGgGR8AlXNpM6BAfaAdLMmgIR0Cy0FKSkj5cdX2UKGgGR8AZ6HfuTibVaAdLMmgIR0Cy0KBMFlkIdX2UKGgGR8AlUsCkoF3ZaAdLMmgIR0Cy0Ewiu+yrdX2UKGgGR8AuEXN1QqI8aAdLMmgIR0Cy0KazmfXgdX2UKGgGR8AZHljmSyMUaAdLMmgIR0Cy0NIAOrhjdX2UKGgGR8AcHW7OE/SqaAdLMmgIR0Cy0SUjcEeRdX2UKGgGR8AkuYwZflZHaAdLMmgIR0Cy0NX225QQdX2UKGgGR8Ax3tXgccU/aAdLMmgIR0Cy0TFIZqEfdX2UKGgGR7+lmz0HyEteaAdLAWgIR0Cy0TRhc7hfdX2UKGgGR8AhkKKpDNQkaAdLMmgIR0Cy0V8M3IdVdX2UKGgGR8AmsgyM1jy4aAdLMmgIR0Cy0ayDVYp2dX2UKGgGR8AhC0MPSUkfaAdLMmgIR0Cy0Vw5WBBidX2UKGgGR79uAd4mkWRBaAdLAWgIR0Cy0V6/M4cWdX2UKGgGR8AgSrOqvNeMaAdLMmgIR0Cy0bh5HEuQdX2UKGgGR8AZVWV/tpmFaAdLMmgIR0Cy0eG+j/ModX2UKGgGR8Ab8ZR8+iaiaAdLMmgIR0Cy0jI2wV0tdX2UKGgGR8AhS9bHIZIhaAdLMmgIR0Cy0eRKtga4dX2UKGgGR8As/1/2Cdz5aAdLMmgIR0Cy0kDy4FzNdX2UKGgGR8AK2zByjpLVaAdLMmgIR0Cy0msNMGordX2UKGgGR8AV7cer+5vtaAdLMmgIR0Cy0rshs67vdWUu"
|
61 |
+
},
|
62 |
+
"ep_success_buffer": {
|
63 |
+
":type:": "<class 'collections.deque'>",
|
64 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
65 |
+
},
|
66 |
+
"_n_updates": 18750,
|
67 |
+
"n_steps": 20,
|
68 |
+
"gamma": 0.95,
|
69 |
+
"gae_lambda": 0.95,
|
70 |
+
"ent_coef": 0.01,
|
71 |
+
"vf_coef": 0.5,
|
72 |
+
"max_grad_norm": 0.5,
|
73 |
+
"normalize_advantage": true,
|
74 |
+
"observation_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
76 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
77 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
78 |
+
"_shape": null,
|
79 |
+
"dtype": null,
|
80 |
+
"_np_random": null
|
81 |
+
},
|
82 |
+
"action_space": {
|
83 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
84 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
85 |
+
"dtype": "float32",
|
86 |
+
"bounded_below": "[ True True True True]",
|
87 |
+
"bounded_above": "[ True True True True]",
|
88 |
+
"_shape": [
|
89 |
+
4
|
90 |
+
],
|
91 |
+
"low": "[-1. -1. -1. -1.]",
|
92 |
+
"high": "[1. 1. 1. 1.]",
|
93 |
+
"low_repr": "-1.0",
|
94 |
+
"high_repr": "1.0",
|
95 |
+
"_np_random": null
|
96 |
+
},
|
97 |
+
"n_envs": 4,
|
98 |
+
"lr_schedule": {
|
99 |
+
":type:": "<class 'function'>",
|
100 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
101 |
+
}
|
102 |
+
}
|
a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83ec1f622e0f100b754351d9da06a6ceea10748f8f18ed76a4d6435800874235
|
3 |
+
size 1116387
|
a2c-PandaPickAndPlaceDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f251404767bf2457435275777bc4a08c45ed57bcbb435cb04e82a855fabe466
|
3 |
+
size 1117859
|
a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaPickAndPlaceDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e94a4cb5d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e94a4cb25c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [256, 256, 256], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700123016568054906, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+v6cP23GQ79aS8M9YfpWP/+2mzxUTMM9T5b7PWI5DD8IT8M9xPJVP0zaSEDmRsM9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApDmDv/ifn774RIq/F558v526nj9XjRU/HxBjP/6wwr/Jd5s+bKvaPGNVsT9kz029lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABBHJw+zLMpPkjIdr/hXeU+XjAUv9FMZL47YS4/+v6cP23GQ79aS8M9Lb8dPBaMVLyW5Qy8eyU5PWGgPLwSGCE9L3soPEegM7tt70Y7rYmRv2Cc4D/ctnq/hw2av4S3PD+pwg4+qFiav2H6Vj//tps8VEzDPZnrHDz3sVG8MX7rux2kOj0NP0W8FhghPfN6KDzToDO7+o9zOxiTWD/8ynu/zSruPWHqWL8jYsm/gnw+P/NaaD9Plvs9YjkMPwhPwz1A5Rk8hkZSvEDR9bvwqDk9Zes1vBYYIT3neig88p8zu+78YDtlAr4+mpSlvnWiqL6/lLw/9TpWvzqWvj8IMmk/xPJVP0zaSEDmRsM9wmEaPFhfW7zEzN7AkBA4PYmSPLwWGCE903ooPIugM7v+31M7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.2265313 -0.7647465 0.09535857]\n [ 0.839758 0.01900816 0.09536043]\n [ 0.12284528 0.5477506 0.09536558]\n [ 0.83573556 3.1383238 0.09535007]]", "desired_goal": "[[-1.0251966 -0.31176734 -1.0802298 ]\n [-0.98678726 1.24007 0.5841879 ]\n [ 0.88696474 -1.5210264 0.30364826]\n [ 0.02669307 1.3854183 -0.05024661]]", "observation": "[[ 3.04903060e-01 1.65724933e-01 -9.63993549e-01 4.47981864e-01\n -5.78863025e-01 -2.22949281e-01 6.81171119e-01 1.22653127e+00\n -7.64746487e-01 9.53585654e-02 9.62809939e-03 -1.29728522e-02\n -8.59965943e-03 4.52017598e-02 -1.15128467e-02 3.93295959e-02\n 1.02832755e-02 -2.74087652e-03 3.03551112e-03]\n [-1.13701403e+00 1.75477219e+00 -9.79352713e-01 -1.20353782e+00\n 7.37175226e-01 1.39414445e-01 -1.20583057e+00 8.39757979e-01\n 1.90081578e-02 9.53604281e-02 9.57765523e-03 -1.27987778e-02\n -7.18667405e-03 4.55666669e-02 -1.20389583e-02 3.93296108e-02\n 1.02832196e-02 -2.74090911e-03 3.71646741e-03]\n [ 8.45994473e-01 -9.83566046e-01 1.16292574e-01 -8.47326338e-01\n -1.57330739e+00 7.44087338e-01 9.07637775e-01 1.22845285e-01\n 5.47750592e-01 9.53655839e-02 9.39303637e-03 -1.28341969e-02\n -7.50175118e-03 4.53271270e-02 -1.11034857e-02 3.93296108e-02\n 1.02832085e-02 -2.74085673e-03 3.43304453e-03]\n [ 3.71112019e-01 -3.23399365e-01 -3.29364449e-01 1.47328937e+00\n -8.36837113e-01 1.48895955e+00 9.10919666e-01 8.35735559e-01\n 3.13832378e+00 9.53500718e-02 9.42272134e-03 -1.33894309e-02\n -6.96249580e+00 4.49376702e-02 -1.15095461e-02 3.93296108e-02\n 1.02831898e-02 -2.74089235e-03 3.23295547e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtIdNvZa8PDsK16M8Sm7+vagbPj0K16M8+cn4PWpipL0K16M8pFYDPkoY9z0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAg6APcVy2j0K16M8TQXwvFnbHrxyaOE92qDhPZF6Qr2zBFM+HAGTvAzJ/D02KdE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtIdNvZa8PDsK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEpu/r2oGz49CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD5yfg9amKkvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApFYDPkoY9z0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.05017824 0.00287989 0.02 ]\n [-0.1242338 0.04641309 0.02 ]\n [ 0.12147898 -0.08026583 0.02 ]\n [ 0.1282602 0.1206518 0.02 ]]", "desired_goal": "[[ 0.06252672 0.10666422 0.02 ]\n [-0.0292994 -0.00969585 0.11006249]\n [ 0.11017008 -0.04748017 0.20607261]\n [-0.01794486 0.12343034 0.10212938]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.0178245e-02\n 2.8798929e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2423380e-01\n 4.6413094e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2147898e-01\n -8.0265835e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2826020e-01\n 1.2065180e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwC1Fr6+FlCmMAWyUSzKMAXSUR0CyxA39itq6dX2UKGgGR8AgZta6jFhoaAdLMmgIR0Cyw7vCMxXXdX2UKGgGR8ASIyfthNM5aAdLMmgIR0CyxBipiqhldX2UKGgGR8Aqpn6Eal1saAdLMmgIR0CyxEUBfa6CdX2UKGgGR8AivU0elsP8aAdLMmgIR0CyxJXw5NoKdX2UKGgGR8AhW7T2FnIyaAdLMmgIR0CyxEp2U0N0dX2UKGgGR8AKQdp7CzkZaAdLMmgIR0CyxKGsq8UVdX2UKGgGR8Aqo9OARTS9aAdLMmgIR0CyxM31e0HAdX2UKGgGR8AX9VXFLnLaaAdLMmgIR0CyxRi4nWrfdX2UKGgGR8AjIf+S8rZraAdLMmgIR0CyxMZ80DU3dX2UKGgGR8AYgmPYFqzraAdLMmgIR0CyxSSj1wo9dX2UKGgGR8AQVi7TUiIMaAdLMmgIR0CyxVJlJ6IFdX2UKGgGR8AwMYVIqbz9aAdLMmgIR0CyxaP/io87dX2UKGgGR8AlEc81XNkfaAdLMmgIR0CyxVdoSL62dX2UKGgGR8AT/IFNcnmaaAdLMmgIR0CyxbAqd6LPdX2UKGgGR8AZDf1pTMq0aAdLMmgIR0Cyxd6iTMaCdX2UKGgGR8AZ3u/k/8l5aAdLMmgIR0Cyxir04BFNdX2UKGgGR8AkYSOinHeaaAdLMmgIR0CyxdzV6NVBdX2UKGgGR8AkxJ7LMcIaaAdLMmgIR0CyxjwaR6njdX2UKGgGR8AquPWhAWzoaAdLMmgIR0CyxmgIMSbpdX2UKGgGR8AHlw1ivxH5aAdLMmgIR0CyxrkLpiZwdX2UKGgGR8AediYsunMuaAdLMmgIR0Cyxm5tvXK9dX2UKGgGR8AknnqVyFPBaAdLMmgIR0Cyxs2jO9nLdX2UKGgGR8AuT4bCJoCdaAdLMmgIR0Cyxv2Kl54XdX2UKGgGR8AwvYIjW07baAdLMmgIR0Cyx0nskY4ydX2UKGgGR8AoTqv/zasZaAdLMmgIR0Cyxvv6be/IdX2UKGgGR8AqdSv1UVBVaAdLMmgIR0Cyx1ZzDGcXdX2UKGgGR8AqETnq3VkMaAdLMmgIR0Cyx4IgV45cdX2UKGgGR8AsnhMJx//eaAdLMmgIR0Cyx87BTGYKdX2UKGgGR8AkZvcafjCIaAdLMmgIR0Cyx4IfwI+odX2UKGgGR8ARgPrfLs8gaAdLMmgIR0Cyx9uGj9GadX2UKGgGR8AjN9Brvb48aAdLMmgIR0CyyAj0g8r7dX2UKGgGR8AiPgtOEdvLaAdLMmgIR0CyyFVQhwERdX2UKGgGR8AnYOI68xsVaAdLMmgIR0CyyAfYe1a4dX2UKGgGR8AcC4wyqMm4aAdLMmgIR0CyyGJTqB3BdX2UKGgGR8AMSq+8Gs3iaAdLMmgIR0CyyI28Zk08dX2UKGgGR8AS96kZaV2SaAdLMmgIR0CyyNpVjqfOdX2UKGgGR8AogtK7I1cdaAdLMmgIR0CyyIcjVx0ddX2UKGgGR8ARdfAsTWXkaAdLMmgIR0CyyOLsv7FbdX2UKGgGR8AiyUu+RHPNaAdLMmgIR0CyyRDHbRF7dX2UKGgGR8Am5RVIZqEfaAdLMmgIR0CyyV5xNqQBdX2UKGgGR8AmVvQ4S6DoaAdLMmgIR0CyyRSlnAZbdX2UKGgGR8AqgKVpsXSCaAdLMmgIR0CyyYXOSntOdX2UKGgGR8AHF/c32mHhaAdLMmgIR0CyybicLBsRdX2UKGgGR8BO5BXjlxOtaAdLMmgIR0CyyhQS39aVdX2UKGgGR8ApEOkLx7RfaAdLMmgIR0Cyyd8lsxfwdX2UKGgGR8AkJn6l+EytaAdLMmgIR0CyylXlfZ27dX2UKGgGR8Aq/jghr30xaAdLMmgIR0CyyowsoUi7dX2UKGgGR8An2peeFtbcaAdLMmgIR0Cyyub3wkPddX2UKGgGR8AWKJMxoIv8aAdLMmgIR0CyyrKaCtihdX2UKGgGR8Alw3Ov+wTuaAdLMmgIR0CyyyiU5dWydX2UKGgGR8AkPmI0qH45aAdLMmgIR0Cyy1u9i+cpdX2UKGgGR8AYHN+so2GZaAdLMmgIR0Cyy7rcsUZfdX2UKGgGR8AdylyimEXdaAdLMmgIR0Cyy5erp7kXdX2UKGgGR8AlrVYISlFdaAdLMmgIR0CyzBD94u9OdX2UKGgGR8AGzhNucc2jaAdLMmgIR0CyzEY1tO2zdX2UKGgGR8AlpJYkmhM8aAdLMmgIR0CyzKbUsnRcdX2UKGgGR8AiGOPvKEFoaAdLMmgIR0CyzHKlP8AJdX2UKGgGR8AZUYXO4XoDaAdLMmgIR0CyzO05dWyUdX2UKGgGR8Awj0se4kNXaAdLMmgIR0CyzSLGNrCWdX2UKGgGR8Ac3kvK2a2GaAdLMmgIR0CyzYKXWvr4dX2UKGgGR8AlTglWwNb1aAdLMmgIR0CyzVYzrNW3dX2UKGgGR8AlshzNliBoaAdLMmgIR0CyzcyhJyyVdX2UKGgGR8ATBDSgGr0baAdLMmgIR0CyzgK9sabXdX2UKGgGR8AsL/dZaFEiaAdLMmgIR0CyzmLHEMspdX2UKGgGR7+pSiudPLxJaAdLAWgIR0CyzmhzJZGKdX2UKGgGR8AYYEV32VVxaAdLMmgIR0CyzjnBHkLhdX2UKGgGR8AlYTL4etCBaAdLMmgIR0CyzpZjhDPXdX2UKGgGR8Ami2itaIN3aAdLMmgIR0CyzsDTz/ZNdX2UKGgGR8AqOfA9FF2FaAdLMmgIR0CyzxAV0tAcdX2UKGgGR8AwQblA/s3RaAdLMmgIR0Cyzr9PHktFdX2UKGgGR8AoHS9/SYw7aAdLMmgIR0CyzxgsGxD9dX2UKGgGR8Arq176YVqOaAdLMmgIR0Cyz0d5hSccdX2UKGgGR8Ahjph4MWoFaAdLMmgIR0Cyz5WgWac7dX2UKGgGR8Ah4HY6GQCCaAdLMmgIR0Cyz0eLehwmdX2UKGgGR8AZYZeiSJTEaAdLMmgIR0Cyz6UY0l7ddX2UKGgGR8AKVO6/Zdv9aAdLMmgIR0Cyz9BODaoNdX2UKGgGR8Afn7hvR7Z4aAdLMmgIR0Cy0CBDohZAdX2UKGgGR8Afl7x/d69kaAdLMmgIR0Cyz8yBPKuCdX2UKGgGR8Awqm6oVEeAaAdLMmgIR0Cy0CY/7iyZdX2UKGgGR8AlXNpM6BAfaAdLMmgIR0Cy0FKSkj5cdX2UKGgGR8AZ6HfuTibVaAdLMmgIR0Cy0KBMFlkIdX2UKGgGR8AlUsCkoF3ZaAdLMmgIR0Cy0Ewiu+yrdX2UKGgGR8AuEXN1QqI8aAdLMmgIR0Cy0KazmfXgdX2UKGgGR8AZHljmSyMUaAdLMmgIR0Cy0NIAOrhjdX2UKGgGR8AcHW7OE/SqaAdLMmgIR0Cy0SUjcEeRdX2UKGgGR8AkuYwZflZHaAdLMmgIR0Cy0NX225QQdX2UKGgGR8Ax3tXgccU/aAdLMmgIR0Cy0TFIZqEfdX2UKGgGR7+lmz0HyEteaAdLAWgIR0Cy0TRhc7hfdX2UKGgGR8AhkKKpDNQkaAdLMmgIR0Cy0V8M3IdVdX2UKGgGR8AmsgyM1jy4aAdLMmgIR0Cy0ayDVYp2dX2UKGgGR8AhC0MPSUkfaAdLMmgIR0Cy0Vw5WBBidX2UKGgGR79uAd4mkWRBaAdLAWgIR0Cy0V6/M4cWdX2UKGgGR8AgSrOqvNeMaAdLMmgIR0Cy0bh5HEuQdX2UKGgGR8AZVWV/tpmFaAdLMmgIR0Cy0eG+j/ModX2UKGgGR8Ab8ZR8+iaiaAdLMmgIR0Cy0jI2wV0tdX2UKGgGR8AhS9bHIZIhaAdLMmgIR0Cy0eRKtga4dX2UKGgGR8As/1/2Cdz5aAdLMmgIR0Cy0kDy4FzNdX2UKGgGR8AK2zByjpLVaAdLMmgIR0Cy0msNMGordX2UKGgGR8AV7cer+5vtaAdLMmgIR0Cy0rshs67vdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 18750, "n_steps": 20, "gamma": 0.95, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (973 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-16T09:54:16.685187"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9337921bfeb05bfb1d1a0b5a323a1656423dc4f33bac2e583dd6c2882d1a60ab
|
3 |
+
size 3013
|