IlluminatiPudding
commited on
Commit
•
c2360fa
1
Parent(s):
d2bf483
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlaceDense-v3.zip +3 -0
- a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlaceDense-v3/data +102 -0
- a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/policy.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlaceDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlaceDense-v3
|
16 |
+
type: PandaPickAndPlaceDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -45.00 +/- 15.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlaceDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlaceDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlaceDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edb5330a1cbee9a430c9f7f657644dd5b23d766824d5e7cf91d0fdf2fbcd499e
|
3 |
+
size 2253008
|
a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlaceDense-v3/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"net_arch": [
|
16 |
+
256,
|
17 |
+
256,
|
18 |
+
256
|
19 |
+
],
|
20 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
21 |
+
"optimizer_kwargs": {
|
22 |
+
"alpha": 0.99,
|
23 |
+
"eps": 1e-05,
|
24 |
+
"weight_decay": 0
|
25 |
+
}
|
26 |
+
},
|
27 |
+
"num_timesteps": 100000,
|
28 |
+
"_total_timesteps": 100000.0,
|
29 |
+
"_num_timesteps_at_start": 0,
|
30 |
+
"seed": null,
|
31 |
+
"action_noise": null,
|
32 |
+
"start_time": 1700046972426692380,
|
33 |
+
"learning_rate": 0.01,
|
34 |
+
"tensorboard_log": null,
|
35 |
+
"_last_obs": {
|
36 |
+
":type:": "<class 'collections.OrderedDict'>",
|
37 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2alJvxLuA78WahI+WbzovtztPr8taRI+uq2XvgQjj78WahI+QsMTPttLzT1DahI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaJ2mv6K4vj9/wik/gGS/v+CY1D/EbXY+6EN+P4FcRL0cHIu/fer3Pjk5oz+lAKY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACR8QjAf5VpPifGFb9UJkk+ttCeP66wgD/Zgy2/2alJvxLuA78WahI+x4GfusM4qDt+KmK8VoUdPeDqJD2d13A9whlLvK63H7xqG/q7DIdmvw9f1D5aESu/fNPIvmBA3T8iSU0/EYQtv1m86L7c7T6/LWkSPj0SjrrFG6k7CflhvJMuHj0WYCI9nddwPboZS7zUtx+8pwv0u6FQEL+atAa+LQhAv0yynT9h2ac/au/KPy2ELb+6rZe+BCOPvxZqEj6cgZ+61TioO58rYLxVhR093eokPZ3XcD3CGUu8rrcfvLAb+rukx4w9EFn9vu1yX7+y+B4/6AiMv6TqvL5bYYQ/QsMTPttLzT1DahI+xvSTup37ojsSkIC84tkbPfTbIj3ex3A9PTJKvE85ILzUTwe8lGgOSwRLE4aUaBJ0lFKUdS4=",
|
38 |
+
"achieved_goal": "[[-0.7877479 -0.5153514 0.14298281]\n [-0.45456198 -0.74581695 0.14297934]\n [-0.2962473 -1.1182561 0.14298281]\n [ 0.14429954 0.10024234 0.14298348]]",
|
39 |
+
"desired_goal": "[[-1.3016787 1.4900095 0.663124 ]\n [-1.4952545 1.6609154 0.2406531 ]\n [ 0.99322367 -0.04793978 -1.0867953 ]\n [ 0.48421088 1.2751838 1.2968947 ]]",
|
40 |
+
"observation": "[[-2.1397440e+00 2.2810934e-01 -5.8505481e-01 1.9643527e-01\n 1.2407444e+00 1.0053918e+00 -6.7779309e-01 -7.8774792e-01\n -5.1535141e-01 1.4298281e-01 -1.2169414e-03 5.1337196e-03\n -1.3804076e-02 3.8457237e-02 4.0263057e-02 5.8799375e-02\n -1.2396278e-02 -9.7483825e-03 -7.6326625e-03]\n [-9.0049815e-01 4.1478774e-01 -6.6823351e-01 -3.9223850e-01\n 1.7285271e+00 8.0189717e-01 -6.7779642e-01 -4.5456198e-01\n -7.4581695e-01 1.4297934e-01 -1.0839176e-03 5.1607811e-03\n -1.3792285e-02 3.8618635e-02 3.9642416e-02 5.8799375e-02\n -1.2396270e-02 -9.7484179e-03 -7.4476781e-03]\n [-5.6373030e-01 -1.3154832e-01 -7.5012475e-01 1.2320037e+00\n 1.3113214e+00 1.5854313e+00 -6.7779809e-01 -2.9624730e-01\n -1.1182561e+00 1.4298281e-01 -1.2169364e-03 5.1337280e-03\n -1.3682275e-02 3.8457233e-02 4.0263046e-02 5.8799375e-02\n -1.2396278e-02 -9.7483825e-03 -7.6326951e-03]\n [ 6.8740159e-02 -4.9482012e-01 -8.7284738e-01 6.2098229e-01\n -1.0940218e+00 -3.6897767e-01 1.0342211e+00 1.4429954e-01\n 1.0024234e-01 1.4298348e-01 -1.1288158e-03 4.9738423e-03\n -1.5693698e-02 3.8049586e-02 3.9760545e-02 5.8784358e-02\n -1.2341079e-02 -9.7792884e-03 -8.2587786e-03]]"
|
41 |
+
},
|
42 |
+
"_last_episode_starts": {
|
43 |
+
":type:": "<class 'numpy.ndarray'>",
|
44 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
45 |
+
},
|
46 |
+
"_last_original_obs": {
|
47 |
+
":type:": "<class 'collections.OrderedDict'>",
|
48 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqE8GPjM0wL0K16M8HVydPZoE970K16M8DuPvO/dGaz0K16M8E0ELu69iSr0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQFpHvU02gT1gZ1U9QUBgvcEPAj4QumE9gVyVPer0Dz4K16M8TTAgPZ2Z8z1GDQ8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqE8GPjM0wL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAB1cnT2aBPe9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAO4+8790ZrPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAE0ELu69iSr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
49 |
+
"achieved_goal": "[[ 0.13116324 -0.09384956 0.02 ]\n [ 0.07683585 -0.12061425 0.02 ]\n [ 0.00732077 0.05744072 0.02 ]\n [-0.00212485 -0.04941052 0.02 ]]",
|
50 |
+
"desired_goal": "[[-0.04867005 0.06309185 0.05210054]\n [-0.05474878 0.12701322 0.05510908]\n [ 0.07293034 0.14058271 0.02 ]\n [ 0.03910856 0.11894534 0.13969907]]",
|
51 |
+
"observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31163239e-01\n -9.38495621e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 7.68358484e-02\n -1.20614246e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 7.32076820e-03\n 5.74407242e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -2.12485041e-03\n -4.94105183e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
|
52 |
+
},
|
53 |
+
"_episode_num": 0,
|
54 |
+
"use_sde": false,
|
55 |
+
"sde_sample_freq": -1,
|
56 |
+
"_current_progress_remaining": 0.0,
|
57 |
+
"_stats_window_size": 100,
|
58 |
+
"ep_info_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCaSFyq+8GuMAWyUSzKMAXSUR0B1biuhbnoxdX2UKGgGR8Aupuc+aBqcaAdLMmgIR0B1dd45cTrWdX2UKGgGR8AeZ+tr9EThaAdLMmgIR0B1fVs7+1jRdX2UKGgGR8AcqbnX/YJ3aAdLMmgIR0B1fMZ0jkdWdX2UKGgGR8Ak8UC7sfJWaAdLMmgIR0B1eL7ALy+YdX2UKGgGR8AmmiJO32EkaAdLMmgIR0B1f190A93bdX2UKGgGR8ArfyU9pyp8aAdLMmgIR0B1htvGZNO/dX2UKGgGR8Aq5lvIfbKzaAdLMmgIR0B1hjlXA/LUdX2UKGgGR8AXYkt29tdiaAdLMmgIR0B1go4HX2/SdX2UKGgGR8Am5WI42jwhaAdLMmgIR0B1iaX7cfvGdX2UKGgGR8AoGq1gH/tIaAdLMmgIR0B1kPTvy9VWdX2UKGgGR8AHMg4ffXPJaAdLMmgIR0B1kCNFSbYsdX2UKGgGR8AkG9qUNayKaAdLMmgIR0B1jFCF9KEndX2UKGgGR8Aoio1DSgGsaAdLMmgIR0B1k3MfRu0kdX2UKGgGR8Ag7QE6kqMFaAdLMmgIR0B1muilBQendX2UKGgGR8AI3+uNgjQiaAdLMmgIR0B1mg9hZyMldX2UKGgGR8AieTEBKcuraAdLMmgIR0B1ljQUpNKzdX2UKGgGR8AVTxSYPXkHaAdLMmgIR0B1nVcMVk+YdX2UKGgGR8ASGetjkMkQaAdLMmgIR0B1pLQ+lj3FdX2UKGgGR8Ah4SJ0nw5OaAdLMmgIR0B1o8NQTEiudX2UKGgGR8AkKcJdB0IUaAdLMmgIR0B1oA2Q4jrzdX2UKGgGR8AcFNDc/MW5aAdLMmgIR0B1pwCo0hvBdX2UKGgGR8ApCeU6gdwOaAdLMmgIR0B1roi5d4VzdX2UKGgGR8ASnh60IC2daAdLMmgIR0B1ra8cuJ1rdX2UKGgGR8Ast1gYxcmjaAdLMmgIR0B1qgsNDtw8dX2UKGgGR8AeYL0Bfa6CaAdLMmgIR0B1syC9RJmNdX2UKGgGR8Aq+NCqp97XaAdLMmgIR0B1u0rDqGDddX2UKGgGR8Ae19tuUD+zaAdLMmgIR0B1vClnAZbZdX2UKGgGR8AqZWd3B55aaAdLMmgIR0B1ulRCQcPwdX2UKGgGR8AbL7gsK9f1aAdLMmgIR0B1w8exOclPdX2UKGgGR8ALU1uR9w3paAdLMmgIR0B1y+o99tuUdX2UKGgGR8Ak23G4qgAZaAdLMmgIR0B1zBQgs9SudX2UKGgGR8AhvztkWhysaAdLMmgIR0B1ycGfPHDKdX2UKGgGR8AeIczZYgaFaAdLMmgIR0B103ns9jgAdX2UKGgGR8AoXWpZOi35aAdLMmgIR0B123afzz3AdX2UKGgGR8AitYvnKW9laAdLMmgIR0B13K9FnZkDdX2UKGgGR8AXZxQzk6tDaAdLMmgIR0B12o+lj3EidX2UKGgGR8AmrSJj2BataAdLMmgIR0B143cM3IdVdX2UKGgGR8AmMhdMTN+taAdLMmgIR0B162b/ffoBdX2UKGgGR8AhzVJcxCY1aAdLMmgIR0B169NahYeUdX2UKGgGR8AQMHAymALBaAdLMmgIR0B16XBzmwJPdX2UKGgGR8AgTzuF6AvtaAdLMmgIR0B180clw97odX2UKGgGR8AVRz90ihWYaAdLMmgIR0B1+1p0wJw9dX2UKGgGR8ArFb349HMEaAdLMmgIR0B1/JZU1hsqdX2UKGgGR8ARUfW+XZ5BaAdLMmgIR0B1+uxZ+x4ZdX2UKGgGR8AcFLVWjoIOaAdLMmgIR0B2AtOGj9GadX2UKGgGR8AgZlhgE2YOaAdLMmgIR0B2CkrWiDdydX2UKGgGR8AUHl90A93baAdLMmgIR0B2CUXqJMxodX2UKGgGR7+mwPiDM/yHaAdLAWgIR0B2CXdpItlJdX2UKGgGR8AmLsIE8q4IaAdLMmgIR0B2BXr5ZbIMdX2UKGgGR8AWOZCv5gw5aAdLMmgIR0B2DDbItDlYdX2UKGgGR8AhPpN9H+ZPaAdLMmgIR0B2E5lMAWBSdX2UKGgGR8ApoHqNZNfxaAdLMmgIR0B2EsUlAu7IdX2UKGgGR8AZTCSA6MisaAdLMmgIR0B2Dmkk8ifQdX2UKGgGR8Abon0Cih38aAdLMmgIR0B2FVNmDlHSdX2UKGgGR8AXwZjx0+1SaAdLMmgIR0B2HOZhKDkEdX2UKGgGR8Ap8jFhoduHaAdLMmgIR0B2HGQo1DSgdX2UKGgGR8AiLmKZUkv9aAdLMmgIR0B2GGMJhOQAdX2UKGgGR8Ad0BvJiiItaAdLMmgIR0B2HzM0P6KtdX2UKGgGR7+jcO9WZJCjaAdLAWgIR0B2H2XOW0JGdX2UKGgGR8AgCNZNfw7UaAdLMmgIR0B2Joo+fRNRdX2UKGgGR8Apw3PzFuNxaAdLMmgIR0B2Jg4jrzGxdX2UKGgGR8AheO+ZgG8maAdLMmgIR0B2Ie83++/QdX2UKGgGR8AhMB5ooNNKaAdLMmgIR0B2KazfJmuldX2UKGgGR8AepYyO7xusaAdLMmgIR0B2MRP3ztkXdX2UKGgGR8AlIwpvxYq5aAdLMmgIR0B2MHk8zQ/pdX2UKGgGR8BKy5IQOFxoaAdLMmgIR0B2LKdoWYWtdX2UKGgGR8Auahh6Skj5aAdLMmgIR0B2M+6OHWSVdX2UKGgGR8AYq+pOvdM1aAdLMmgIR0B2OxZDArQPdX2UKGgGR8AtQ+i8FpwkaAdLMmgIR0B2OmQ1aW5ZdX2UKGgGR8AalBeHBUJfaAdLMmgIR0B2NnCqIacadX2UKGgGR8AYfd56dDpkaAdLMmgIR0B2PZZ4fOlgdX2UKGgGR8Aj6u6mO2iMaAdLMmgIR0B2ROkpI+W4dX2UKGgGR8AmeVfu1F6SaAdLMmgIR0B2RCoFV1fWdX2UKGgGR8AiJQSBbwBpaAdLMmgIR0B2QEcbR4QjdX2UKGgGR8AlQBV+7UXpaAdLMmgIR0B2R4c7yQPqdX2UKGgGR8Adm00FbFCLaAdLMmgIR0B2Tq3lS0jUdX2UKGgGR8A4a4Z/CqIaaAdLMmgIR0B2TlF6Rhc8dX2UKGgGR8AiexZ+x4Y8aAdLMmgIR0B2SmaOPvKEdX2UKGgGR8AhnOB19v0iaAdLMmgIR0B2Ucn7YTTOdX2UKGgGR8Am9eHBUJfIaAdLMmgIR0B2WTAvcrRTdX2UKGgGR8AvUofjjrAyaAdLMmgIR0B2WGSKWLP2dX2UKGgGR8AbPDYRNATqaAdLMmgIR0B2VEf3evZAdX2UKGgGR8AdqyUs4DLbaAdLMmgIR0B2W4HxBmf5dX2UKGgGR8Al3ndweeWfaAdLMmgIR0B2YqB5HEuQdX2UKGgGR8An+eKbayrxaAdLMmgIR0B2Yi1b7j1gdX2UKGgGR8ArUipNsWO7aAdLMmgIR0B2Xjo0Q9RrdX2UKGgGR8AsfV4oqkM1aAdLMmgIR0B2ZTikwevIdX2UKGgGR8AqualUIcBEaAdLMmgIR0B2bIs9SuQqdX2UKGgGR8Ap0z+FUQ05aAdLMmgIR0B2a9IGyHEddX2UKGgGR8ArddiUgSvlaAdLMmgIR0B2Z/FHavicdX2UKGgGR7+Yrz5GjKxLaAdLAWgIR0B2aCErXlKcdX2UKGgGR8AMozeoDPnkaAdLMmgIR0B2b04sEq2CdX2UKGgGR8AiZVxS5y2haAdLMmgIR0B2dnaDf3vhdX2UKGgGR8AhOPcSGrS3aAdLMmgIR0B2dbK8tf5UdX2UKGgGR8AhoJhvze41aAdLMmgIR0B2cgI4VARkdX2UKGgGR8AseWcBltj1aAdLMmgIR0B2eIChew9rdX2UKGgGR8AlTOW0JF9baAdLMmgIR0B2f9KCg9NfdX2UKGgGR8AfmlqJuVHGaAdLMmgIR0B2fyZc9nscdX2UKGgGR8AipdUKiO/+aAdLMmgIR0B2e104iosJdWUu"
|
61 |
+
},
|
62 |
+
"ep_success_buffer": {
|
63 |
+
":type:": "<class 'collections.deque'>",
|
64 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
65 |
+
},
|
66 |
+
"_n_updates": 1250,
|
67 |
+
"n_steps": 20,
|
68 |
+
"gamma": 0.95,
|
69 |
+
"gae_lambda": 0.95,
|
70 |
+
"ent_coef": 0.0001,
|
71 |
+
"vf_coef": 0.5,
|
72 |
+
"max_grad_norm": 0.5,
|
73 |
+
"normalize_advantage": true,
|
74 |
+
"observation_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
76 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
77 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
78 |
+
"_shape": null,
|
79 |
+
"dtype": null,
|
80 |
+
"_np_random": null
|
81 |
+
},
|
82 |
+
"action_space": {
|
83 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
84 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
85 |
+
"dtype": "float32",
|
86 |
+
"bounded_below": "[ True True True True]",
|
87 |
+
"bounded_above": "[ True True True True]",
|
88 |
+
"_shape": [
|
89 |
+
4
|
90 |
+
],
|
91 |
+
"low": "[-1. -1. -1. -1.]",
|
92 |
+
"high": "[1. 1. 1. 1.]",
|
93 |
+
"low_repr": "-1.0",
|
94 |
+
"high_repr": "1.0",
|
95 |
+
"_np_random": null
|
96 |
+
},
|
97 |
+
"n_envs": 4,
|
98 |
+
"lr_schedule": {
|
99 |
+
":type:": "<class 'function'>",
|
100 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
101 |
+
}
|
102 |
+
}
|
a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e3751dbd57a6e9ed04c9165bd391d8a0f9f2f4106f2d5625873d99fa5187c76
|
3 |
+
size 1116195
|
a2c-PandaPickAndPlaceDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9705fba34af19bc882e0e73ba0e82363b304fd5805d7611d7a99f5a75f288bb
|
3 |
+
size 1117667
|
a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaPickAndPlaceDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [256, 256, 256], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700046972426692380, "learning_rate": 0.01, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2alJvxLuA78WahI+WbzovtztPr8taRI+uq2XvgQjj78WahI+QsMTPttLzT1DahI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaJ2mv6K4vj9/wik/gGS/v+CY1D/EbXY+6EN+P4FcRL0cHIu/fer3Pjk5oz+lAKY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACR8QjAf5VpPifGFb9UJkk+ttCeP66wgD/Zgy2/2alJvxLuA78WahI+x4GfusM4qDt+KmK8VoUdPeDqJD2d13A9whlLvK63H7xqG/q7DIdmvw9f1D5aESu/fNPIvmBA3T8iSU0/EYQtv1m86L7c7T6/LWkSPj0SjrrFG6k7CflhvJMuHj0WYCI9nddwPboZS7zUtx+8pwv0u6FQEL+atAa+LQhAv0yynT9h2ac/au/KPy2ELb+6rZe+BCOPvxZqEj6cgZ+61TioO58rYLxVhR093eokPZ3XcD3CGUu8rrcfvLAb+rukx4w9EFn9vu1yX7+y+B4/6AiMv6TqvL5bYYQ/QsMTPttLzT1DahI+xvSTup37ojsSkIC84tkbPfTbIj3ex3A9PTJKvE85ILzUTwe8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.7877479 -0.5153514 0.14298281]\n [-0.45456198 -0.74581695 0.14297934]\n [-0.2962473 -1.1182561 0.14298281]\n [ 0.14429954 0.10024234 0.14298348]]", "desired_goal": "[[-1.3016787 1.4900095 0.663124 ]\n [-1.4952545 1.6609154 0.2406531 ]\n [ 0.99322367 -0.04793978 -1.0867953 ]\n [ 0.48421088 1.2751838 1.2968947 ]]", "observation": "[[-2.1397440e+00 2.2810934e-01 -5.8505481e-01 1.9643527e-01\n 1.2407444e+00 1.0053918e+00 -6.7779309e-01 -7.8774792e-01\n -5.1535141e-01 1.4298281e-01 -1.2169414e-03 5.1337196e-03\n -1.3804076e-02 3.8457237e-02 4.0263057e-02 5.8799375e-02\n -1.2396278e-02 -9.7483825e-03 -7.6326625e-03]\n [-9.0049815e-01 4.1478774e-01 -6.6823351e-01 -3.9223850e-01\n 1.7285271e+00 8.0189717e-01 -6.7779642e-01 -4.5456198e-01\n -7.4581695e-01 1.4297934e-01 -1.0839176e-03 5.1607811e-03\n -1.3792285e-02 3.8618635e-02 3.9642416e-02 5.8799375e-02\n -1.2396270e-02 -9.7484179e-03 -7.4476781e-03]\n [-5.6373030e-01 -1.3154832e-01 -7.5012475e-01 1.2320037e+00\n 1.3113214e+00 1.5854313e+00 -6.7779809e-01 -2.9624730e-01\n -1.1182561e+00 1.4298281e-01 -1.2169364e-03 5.1337280e-03\n -1.3682275e-02 3.8457233e-02 4.0263046e-02 5.8799375e-02\n -1.2396278e-02 -9.7483825e-03 -7.6326951e-03]\n [ 6.8740159e-02 -4.9482012e-01 -8.7284738e-01 6.2098229e-01\n -1.0940218e+00 -3.6897767e-01 1.0342211e+00 1.4429954e-01\n 1.0024234e-01 1.4298348e-01 -1.1288158e-03 4.9738423e-03\n -1.5693698e-02 3.8049586e-02 3.9760545e-02 5.8784358e-02\n -1.2341079e-02 -9.7792884e-03 -8.2587786e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqE8GPjM0wL0K16M8HVydPZoE970K16M8DuPvO/dGaz0K16M8E0ELu69iSr0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQFpHvU02gT1gZ1U9QUBgvcEPAj4QumE9gVyVPer0Dz4K16M8TTAgPZ2Z8z1GDQ8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqE8GPjM0wL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAB1cnT2aBPe9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAO4+8790ZrPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAE0ELu69iSr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.13116324 -0.09384956 0.02 ]\n [ 0.07683585 -0.12061425 0.02 ]\n [ 0.00732077 0.05744072 0.02 ]\n [-0.00212485 -0.04941052 0.02 ]]", "desired_goal": "[[-0.04867005 0.06309185 0.05210054]\n [-0.05474878 0.12701322 0.05510908]\n [ 0.07293034 0.14058271 0.02 ]\n [ 0.03910856 0.11894534 0.13969907]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31163239e-01\n -9.38495621e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 7.68358484e-02\n -1.20614246e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 7.32076820e-03\n 5.74407242e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -2.12485041e-03\n -4.94105183e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCaSFyq+8GuMAWyUSzKMAXSUR0B1biuhbnoxdX2UKGgGR8Aupuc+aBqcaAdLMmgIR0B1dd45cTrWdX2UKGgGR8AeZ+tr9EThaAdLMmgIR0B1fVs7+1jRdX2UKGgGR8AcqbnX/YJ3aAdLMmgIR0B1fMZ0jkdWdX2UKGgGR8Ak8UC7sfJWaAdLMmgIR0B1eL7ALy+YdX2UKGgGR8AmmiJO32EkaAdLMmgIR0B1f190A93bdX2UKGgGR8ArfyU9pyp8aAdLMmgIR0B1htvGZNO/dX2UKGgGR8Aq5lvIfbKzaAdLMmgIR0B1hjlXA/LUdX2UKGgGR8AXYkt29tdiaAdLMmgIR0B1go4HX2/SdX2UKGgGR8Am5WI42jwhaAdLMmgIR0B1iaX7cfvGdX2UKGgGR8AoGq1gH/tIaAdLMmgIR0B1kPTvy9VWdX2UKGgGR8AHMg4ffXPJaAdLMmgIR0B1kCNFSbYsdX2UKGgGR8AkG9qUNayKaAdLMmgIR0B1jFCF9KEndX2UKGgGR8Aoio1DSgGsaAdLMmgIR0B1k3MfRu0kdX2UKGgGR8Ag7QE6kqMFaAdLMmgIR0B1muilBQendX2UKGgGR8AI3+uNgjQiaAdLMmgIR0B1mg9hZyMldX2UKGgGR8AieTEBKcuraAdLMmgIR0B1ljQUpNKzdX2UKGgGR8AVTxSYPXkHaAdLMmgIR0B1nVcMVk+YdX2UKGgGR8ASGetjkMkQaAdLMmgIR0B1pLQ+lj3FdX2UKGgGR8Ah4SJ0nw5OaAdLMmgIR0B1o8NQTEiudX2UKGgGR8AkKcJdB0IUaAdLMmgIR0B1oA2Q4jrzdX2UKGgGR8AcFNDc/MW5aAdLMmgIR0B1pwCo0hvBdX2UKGgGR8ApCeU6gdwOaAdLMmgIR0B1roi5d4VzdX2UKGgGR8ASnh60IC2daAdLMmgIR0B1ra8cuJ1rdX2UKGgGR8Ast1gYxcmjaAdLMmgIR0B1qgsNDtw8dX2UKGgGR8AeYL0Bfa6CaAdLMmgIR0B1syC9RJmNdX2UKGgGR8Aq+NCqp97XaAdLMmgIR0B1u0rDqGDddX2UKGgGR8Ae19tuUD+zaAdLMmgIR0B1vClnAZbZdX2UKGgGR8AqZWd3B55aaAdLMmgIR0B1ulRCQcPwdX2UKGgGR8AbL7gsK9f1aAdLMmgIR0B1w8exOclPdX2UKGgGR8ALU1uR9w3paAdLMmgIR0B1y+o99tuUdX2UKGgGR8Ak23G4qgAZaAdLMmgIR0B1zBQgs9SudX2UKGgGR8AhvztkWhysaAdLMmgIR0B1ycGfPHDKdX2UKGgGR8AeIczZYgaFaAdLMmgIR0B103ns9jgAdX2UKGgGR8AoXWpZOi35aAdLMmgIR0B123afzz3AdX2UKGgGR8AitYvnKW9laAdLMmgIR0B13K9FnZkDdX2UKGgGR8AXZxQzk6tDaAdLMmgIR0B12o+lj3EidX2UKGgGR8AmrSJj2BataAdLMmgIR0B143cM3IdVdX2UKGgGR8AmMhdMTN+taAdLMmgIR0B162b/ffoBdX2UKGgGR8AhzVJcxCY1aAdLMmgIR0B169NahYeUdX2UKGgGR8AQMHAymALBaAdLMmgIR0B16XBzmwJPdX2UKGgGR8AgTzuF6AvtaAdLMmgIR0B180clw97odX2UKGgGR8AVRz90ihWYaAdLMmgIR0B1+1p0wJw9dX2UKGgGR8ArFb349HMEaAdLMmgIR0B1/JZU1hsqdX2UKGgGR8ARUfW+XZ5BaAdLMmgIR0B1+uxZ+x4ZdX2UKGgGR8AcFLVWjoIOaAdLMmgIR0B2AtOGj9GadX2UKGgGR8AgZlhgE2YOaAdLMmgIR0B2CkrWiDdydX2UKGgGR8AUHl90A93baAdLMmgIR0B2CUXqJMxodX2UKGgGR7+mwPiDM/yHaAdLAWgIR0B2CXdpItlJdX2UKGgGR8AmLsIE8q4IaAdLMmgIR0B2BXr5ZbIMdX2UKGgGR8AWOZCv5gw5aAdLMmgIR0B2DDbItDlYdX2UKGgGR8AhPpN9H+ZPaAdLMmgIR0B2E5lMAWBSdX2UKGgGR8ApoHqNZNfxaAdLMmgIR0B2EsUlAu7IdX2UKGgGR8AZTCSA6MisaAdLMmgIR0B2Dmkk8ifQdX2UKGgGR8Abon0Cih38aAdLMmgIR0B2FVNmDlHSdX2UKGgGR8AXwZjx0+1SaAdLMmgIR0B2HOZhKDkEdX2UKGgGR8Ap8jFhoduHaAdLMmgIR0B2HGQo1DSgdX2UKGgGR8AiLmKZUkv9aAdLMmgIR0B2GGMJhOQAdX2UKGgGR8Ad0BvJiiItaAdLMmgIR0B2HzM0P6KtdX2UKGgGR7+jcO9WZJCjaAdLAWgIR0B2H2XOW0JGdX2UKGgGR8AgCNZNfw7UaAdLMmgIR0B2Joo+fRNRdX2UKGgGR8Apw3PzFuNxaAdLMmgIR0B2Jg4jrzGxdX2UKGgGR8AheO+ZgG8maAdLMmgIR0B2Ie83++/QdX2UKGgGR8AhMB5ooNNKaAdLMmgIR0B2KazfJmuldX2UKGgGR8AepYyO7xusaAdLMmgIR0B2MRP3ztkXdX2UKGgGR8AlIwpvxYq5aAdLMmgIR0B2MHk8zQ/pdX2UKGgGR8BKy5IQOFxoaAdLMmgIR0B2LKdoWYWtdX2UKGgGR8Auahh6Skj5aAdLMmgIR0B2M+6OHWSVdX2UKGgGR8AYq+pOvdM1aAdLMmgIR0B2OxZDArQPdX2UKGgGR8AtQ+i8FpwkaAdLMmgIR0B2OmQ1aW5ZdX2UKGgGR8AalBeHBUJfaAdLMmgIR0B2NnCqIacadX2UKGgGR8AYfd56dDpkaAdLMmgIR0B2PZZ4fOlgdX2UKGgGR8Aj6u6mO2iMaAdLMmgIR0B2ROkpI+W4dX2UKGgGR8AmeVfu1F6SaAdLMmgIR0B2RCoFV1fWdX2UKGgGR8AiJQSBbwBpaAdLMmgIR0B2QEcbR4QjdX2UKGgGR8AlQBV+7UXpaAdLMmgIR0B2R4c7yQPqdX2UKGgGR8Adm00FbFCLaAdLMmgIR0B2Tq3lS0jUdX2UKGgGR8A4a4Z/CqIaaAdLMmgIR0B2TlF6Rhc8dX2UKGgGR8AiexZ+x4Y8aAdLMmgIR0B2SmaOPvKEdX2UKGgGR8AhnOB19v0iaAdLMmgIR0B2Ucn7YTTOdX2UKGgGR8Am9eHBUJfIaAdLMmgIR0B2WTAvcrRTdX2UKGgGR8AvUofjjrAyaAdLMmgIR0B2WGSKWLP2dX2UKGgGR8AbPDYRNATqaAdLMmgIR0B2VEf3evZAdX2UKGgGR8AdqyUs4DLbaAdLMmgIR0B2W4HxBmf5dX2UKGgGR8Al3ndweeWfaAdLMmgIR0B2YqB5HEuQdX2UKGgGR8An+eKbayrxaAdLMmgIR0B2Yi1b7j1gdX2UKGgGR8ArUipNsWO7aAdLMmgIR0B2Xjo0Q9RrdX2UKGgGR8AsfV4oqkM1aAdLMmgIR0B2ZTikwevIdX2UKGgGR8AqualUIcBEaAdLMmgIR0B2bIs9SuQqdX2UKGgGR8Ap0z+FUQ05aAdLMmgIR0B2a9IGyHEddX2UKGgGR8ArddiUgSvlaAdLMmgIR0B2Z/FHavicdX2UKGgGR7+Yrz5GjKxLaAdLAWgIR0B2aCErXlKcdX2UKGgGR8AMozeoDPnkaAdLMmgIR0B2b04sEq2CdX2UKGgGR8AiZVxS5y2haAdLMmgIR0B2dnaDf3vhdX2UKGgGR8AhOPcSGrS3aAdLMmgIR0B2dbK8tf5UdX2UKGgGR8AhoJhvze41aAdLMmgIR0B2cgI4VARkdX2UKGgGR8AseWcBltj1aAdLMmgIR0B2eIChew9rdX2UKGgGR8AlTOW0JF9baAdLMmgIR0B2f9KCg9NfdX2UKGgGR8AfmlqJuVHGaAdLMmgIR0B2fyZc9nscdX2UKGgGR8AipdUKiO/+aAdLMmgIR0B2e104iosJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1250, "n_steps": 20, "gamma": 0.95, "gae_lambda": 0.95, "ent_coef": 0.0001, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (834 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-15T11:22:17.113768"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d88d8ea80a2cd877915d8d887305d92629d3088de75e403d54030cff358611b7
|
3 |
+
size 3013
|