IlluminatiPudding commited on
Commit
c2360fa
1 Parent(s): d2bf483

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlaceDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlaceDense-v3
16
+ type: PandaPickAndPlaceDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -45.00 +/- 15.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlaceDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlaceDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlaceDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edb5330a1cbee9a430c9f7f657644dd5b23d766824d5e7cf91d0fdf2fbcd499e
3
+ size 2253008
a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlaceDense-v3/data ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "net_arch": [
16
+ 256,
17
+ 256,
18
+ 256
19
+ ],
20
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
21
+ "optimizer_kwargs": {
22
+ "alpha": 0.99,
23
+ "eps": 1e-05,
24
+ "weight_decay": 0
25
+ }
26
+ },
27
+ "num_timesteps": 100000,
28
+ "_total_timesteps": 100000.0,
29
+ "_num_timesteps_at_start": 0,
30
+ "seed": null,
31
+ "action_noise": null,
32
+ "start_time": 1700046972426692380,
33
+ "learning_rate": 0.01,
34
+ "tensorboard_log": null,
35
+ "_last_obs": {
36
+ ":type:": "<class 'collections.OrderedDict'>",
37
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2alJvxLuA78WahI+WbzovtztPr8taRI+uq2XvgQjj78WahI+QsMTPttLzT1DahI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaJ2mv6K4vj9/wik/gGS/v+CY1D/EbXY+6EN+P4FcRL0cHIu/fer3Pjk5oz+lAKY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACR8QjAf5VpPifGFb9UJkk+ttCeP66wgD/Zgy2/2alJvxLuA78WahI+x4GfusM4qDt+KmK8VoUdPeDqJD2d13A9whlLvK63H7xqG/q7DIdmvw9f1D5aESu/fNPIvmBA3T8iSU0/EYQtv1m86L7c7T6/LWkSPj0SjrrFG6k7CflhvJMuHj0WYCI9nddwPboZS7zUtx+8pwv0u6FQEL+atAa+LQhAv0yynT9h2ac/au/KPy2ELb+6rZe+BCOPvxZqEj6cgZ+61TioO58rYLxVhR093eokPZ3XcD3CGUu8rrcfvLAb+rukx4w9EFn9vu1yX7+y+B4/6AiMv6TqvL5bYYQ/QsMTPttLzT1DahI+xvSTup37ojsSkIC84tkbPfTbIj3ex3A9PTJKvE85ILzUTwe8lGgOSwRLE4aUaBJ0lFKUdS4=",
38
+ "achieved_goal": "[[-0.7877479 -0.5153514 0.14298281]\n [-0.45456198 -0.74581695 0.14297934]\n [-0.2962473 -1.1182561 0.14298281]\n [ 0.14429954 0.10024234 0.14298348]]",
39
+ "desired_goal": "[[-1.3016787 1.4900095 0.663124 ]\n [-1.4952545 1.6609154 0.2406531 ]\n [ 0.99322367 -0.04793978 -1.0867953 ]\n [ 0.48421088 1.2751838 1.2968947 ]]",
40
+ "observation": "[[-2.1397440e+00 2.2810934e-01 -5.8505481e-01 1.9643527e-01\n 1.2407444e+00 1.0053918e+00 -6.7779309e-01 -7.8774792e-01\n -5.1535141e-01 1.4298281e-01 -1.2169414e-03 5.1337196e-03\n -1.3804076e-02 3.8457237e-02 4.0263057e-02 5.8799375e-02\n -1.2396278e-02 -9.7483825e-03 -7.6326625e-03]\n [-9.0049815e-01 4.1478774e-01 -6.6823351e-01 -3.9223850e-01\n 1.7285271e+00 8.0189717e-01 -6.7779642e-01 -4.5456198e-01\n -7.4581695e-01 1.4297934e-01 -1.0839176e-03 5.1607811e-03\n -1.3792285e-02 3.8618635e-02 3.9642416e-02 5.8799375e-02\n -1.2396270e-02 -9.7484179e-03 -7.4476781e-03]\n [-5.6373030e-01 -1.3154832e-01 -7.5012475e-01 1.2320037e+00\n 1.3113214e+00 1.5854313e+00 -6.7779809e-01 -2.9624730e-01\n -1.1182561e+00 1.4298281e-01 -1.2169364e-03 5.1337280e-03\n -1.3682275e-02 3.8457233e-02 4.0263046e-02 5.8799375e-02\n -1.2396278e-02 -9.7483825e-03 -7.6326951e-03]\n [ 6.8740159e-02 -4.9482012e-01 -8.7284738e-01 6.2098229e-01\n -1.0940218e+00 -3.6897767e-01 1.0342211e+00 1.4429954e-01\n 1.0024234e-01 1.4298348e-01 -1.1288158e-03 4.9738423e-03\n -1.5693698e-02 3.8049586e-02 3.9760545e-02 5.8784358e-02\n -1.2341079e-02 -9.7792884e-03 -8.2587786e-03]]"
41
+ },
42
+ "_last_episode_starts": {
43
+ ":type:": "<class 'numpy.ndarray'>",
44
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
45
+ },
46
+ "_last_original_obs": {
47
+ ":type:": "<class 'collections.OrderedDict'>",
48
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqE8GPjM0wL0K16M8HVydPZoE970K16M8DuPvO/dGaz0K16M8E0ELu69iSr0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQFpHvU02gT1gZ1U9QUBgvcEPAj4QumE9gVyVPer0Dz4K16M8TTAgPZ2Z8z1GDQ8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqE8GPjM0wL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAB1cnT2aBPe9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAO4+8790ZrPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAE0ELu69iSr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
49
+ "achieved_goal": "[[ 0.13116324 -0.09384956 0.02 ]\n [ 0.07683585 -0.12061425 0.02 ]\n [ 0.00732077 0.05744072 0.02 ]\n [-0.00212485 -0.04941052 0.02 ]]",
50
+ "desired_goal": "[[-0.04867005 0.06309185 0.05210054]\n [-0.05474878 0.12701322 0.05510908]\n [ 0.07293034 0.14058271 0.02 ]\n [ 0.03910856 0.11894534 0.13969907]]",
51
+ "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31163239e-01\n -9.38495621e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 7.68358484e-02\n -1.20614246e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 7.32076820e-03\n 5.74407242e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -2.12485041e-03\n -4.94105183e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
52
+ },
53
+ "_episode_num": 0,
54
+ "use_sde": false,
55
+ "sde_sample_freq": -1,
56
+ "_current_progress_remaining": 0.0,
57
+ "_stats_window_size": 100,
58
+ "ep_info_buffer": {
59
+ ":type:": "<class 'collections.deque'>",
60
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCaSFyq+8GuMAWyUSzKMAXSUR0B1biuhbnoxdX2UKGgGR8Aupuc+aBqcaAdLMmgIR0B1dd45cTrWdX2UKGgGR8AeZ+tr9EThaAdLMmgIR0B1fVs7+1jRdX2UKGgGR8AcqbnX/YJ3aAdLMmgIR0B1fMZ0jkdWdX2UKGgGR8Ak8UC7sfJWaAdLMmgIR0B1eL7ALy+YdX2UKGgGR8AmmiJO32EkaAdLMmgIR0B1f190A93bdX2UKGgGR8ArfyU9pyp8aAdLMmgIR0B1htvGZNO/dX2UKGgGR8Aq5lvIfbKzaAdLMmgIR0B1hjlXA/LUdX2UKGgGR8AXYkt29tdiaAdLMmgIR0B1go4HX2/SdX2UKGgGR8Am5WI42jwhaAdLMmgIR0B1iaX7cfvGdX2UKGgGR8AoGq1gH/tIaAdLMmgIR0B1kPTvy9VWdX2UKGgGR8AHMg4ffXPJaAdLMmgIR0B1kCNFSbYsdX2UKGgGR8AkG9qUNayKaAdLMmgIR0B1jFCF9KEndX2UKGgGR8Aoio1DSgGsaAdLMmgIR0B1k3MfRu0kdX2UKGgGR8Ag7QE6kqMFaAdLMmgIR0B1muilBQendX2UKGgGR8AI3+uNgjQiaAdLMmgIR0B1mg9hZyMldX2UKGgGR8AieTEBKcuraAdLMmgIR0B1ljQUpNKzdX2UKGgGR8AVTxSYPXkHaAdLMmgIR0B1nVcMVk+YdX2UKGgGR8ASGetjkMkQaAdLMmgIR0B1pLQ+lj3FdX2UKGgGR8Ah4SJ0nw5OaAdLMmgIR0B1o8NQTEiudX2UKGgGR8AkKcJdB0IUaAdLMmgIR0B1oA2Q4jrzdX2UKGgGR8AcFNDc/MW5aAdLMmgIR0B1pwCo0hvBdX2UKGgGR8ApCeU6gdwOaAdLMmgIR0B1roi5d4VzdX2UKGgGR8ASnh60IC2daAdLMmgIR0B1ra8cuJ1rdX2UKGgGR8Ast1gYxcmjaAdLMmgIR0B1qgsNDtw8dX2UKGgGR8AeYL0Bfa6CaAdLMmgIR0B1syC9RJmNdX2UKGgGR8Aq+NCqp97XaAdLMmgIR0B1u0rDqGDddX2UKGgGR8Ae19tuUD+zaAdLMmgIR0B1vClnAZbZdX2UKGgGR8AqZWd3B55aaAdLMmgIR0B1ulRCQcPwdX2UKGgGR8AbL7gsK9f1aAdLMmgIR0B1w8exOclPdX2UKGgGR8ALU1uR9w3paAdLMmgIR0B1y+o99tuUdX2UKGgGR8Ak23G4qgAZaAdLMmgIR0B1zBQgs9SudX2UKGgGR8AhvztkWhysaAdLMmgIR0B1ycGfPHDKdX2UKGgGR8AeIczZYgaFaAdLMmgIR0B103ns9jgAdX2UKGgGR8AoXWpZOi35aAdLMmgIR0B123afzz3AdX2UKGgGR8AitYvnKW9laAdLMmgIR0B13K9FnZkDdX2UKGgGR8AXZxQzk6tDaAdLMmgIR0B12o+lj3EidX2UKGgGR8AmrSJj2BataAdLMmgIR0B143cM3IdVdX2UKGgGR8AmMhdMTN+taAdLMmgIR0B162b/ffoBdX2UKGgGR8AhzVJcxCY1aAdLMmgIR0B169NahYeUdX2UKGgGR8AQMHAymALBaAdLMmgIR0B16XBzmwJPdX2UKGgGR8AgTzuF6AvtaAdLMmgIR0B180clw97odX2UKGgGR8AVRz90ihWYaAdLMmgIR0B1+1p0wJw9dX2UKGgGR8ArFb349HMEaAdLMmgIR0B1/JZU1hsqdX2UKGgGR8ARUfW+XZ5BaAdLMmgIR0B1+uxZ+x4ZdX2UKGgGR8AcFLVWjoIOaAdLMmgIR0B2AtOGj9GadX2UKGgGR8AgZlhgE2YOaAdLMmgIR0B2CkrWiDdydX2UKGgGR8AUHl90A93baAdLMmgIR0B2CUXqJMxodX2UKGgGR7+mwPiDM/yHaAdLAWgIR0B2CXdpItlJdX2UKGgGR8AmLsIE8q4IaAdLMmgIR0B2BXr5ZbIMdX2UKGgGR8AWOZCv5gw5aAdLMmgIR0B2DDbItDlYdX2UKGgGR8AhPpN9H+ZPaAdLMmgIR0B2E5lMAWBSdX2UKGgGR8ApoHqNZNfxaAdLMmgIR0B2EsUlAu7IdX2UKGgGR8AZTCSA6MisaAdLMmgIR0B2Dmkk8ifQdX2UKGgGR8Abon0Cih38aAdLMmgIR0B2FVNmDlHSdX2UKGgGR8AXwZjx0+1SaAdLMmgIR0B2HOZhKDkEdX2UKGgGR8Ap8jFhoduHaAdLMmgIR0B2HGQo1DSgdX2UKGgGR8AiLmKZUkv9aAdLMmgIR0B2GGMJhOQAdX2UKGgGR8Ad0BvJiiItaAdLMmgIR0B2HzM0P6KtdX2UKGgGR7+jcO9WZJCjaAdLAWgIR0B2H2XOW0JGdX2UKGgGR8AgCNZNfw7UaAdLMmgIR0B2Joo+fRNRdX2UKGgGR8Apw3PzFuNxaAdLMmgIR0B2Jg4jrzGxdX2UKGgGR8AheO+ZgG8maAdLMmgIR0B2Ie83++/QdX2UKGgGR8AhMB5ooNNKaAdLMmgIR0B2KazfJmuldX2UKGgGR8AepYyO7xusaAdLMmgIR0B2MRP3ztkXdX2UKGgGR8AlIwpvxYq5aAdLMmgIR0B2MHk8zQ/pdX2UKGgGR8BKy5IQOFxoaAdLMmgIR0B2LKdoWYWtdX2UKGgGR8Auahh6Skj5aAdLMmgIR0B2M+6OHWSVdX2UKGgGR8AYq+pOvdM1aAdLMmgIR0B2OxZDArQPdX2UKGgGR8AtQ+i8FpwkaAdLMmgIR0B2OmQ1aW5ZdX2UKGgGR8AalBeHBUJfaAdLMmgIR0B2NnCqIacadX2UKGgGR8AYfd56dDpkaAdLMmgIR0B2PZZ4fOlgdX2UKGgGR8Aj6u6mO2iMaAdLMmgIR0B2ROkpI+W4dX2UKGgGR8AmeVfu1F6SaAdLMmgIR0B2RCoFV1fWdX2UKGgGR8AiJQSBbwBpaAdLMmgIR0B2QEcbR4QjdX2UKGgGR8AlQBV+7UXpaAdLMmgIR0B2R4c7yQPqdX2UKGgGR8Adm00FbFCLaAdLMmgIR0B2Tq3lS0jUdX2UKGgGR8A4a4Z/CqIaaAdLMmgIR0B2TlF6Rhc8dX2UKGgGR8AiexZ+x4Y8aAdLMmgIR0B2SmaOPvKEdX2UKGgGR8AhnOB19v0iaAdLMmgIR0B2Ucn7YTTOdX2UKGgGR8Am9eHBUJfIaAdLMmgIR0B2WTAvcrRTdX2UKGgGR8AvUofjjrAyaAdLMmgIR0B2WGSKWLP2dX2UKGgGR8AbPDYRNATqaAdLMmgIR0B2VEf3evZAdX2UKGgGR8AdqyUs4DLbaAdLMmgIR0B2W4HxBmf5dX2UKGgGR8Al3ndweeWfaAdLMmgIR0B2YqB5HEuQdX2UKGgGR8An+eKbayrxaAdLMmgIR0B2Yi1b7j1gdX2UKGgGR8ArUipNsWO7aAdLMmgIR0B2Xjo0Q9RrdX2UKGgGR8AsfV4oqkM1aAdLMmgIR0B2ZTikwevIdX2UKGgGR8AqualUIcBEaAdLMmgIR0B2bIs9SuQqdX2UKGgGR8Ap0z+FUQ05aAdLMmgIR0B2a9IGyHEddX2UKGgGR8ArddiUgSvlaAdLMmgIR0B2Z/FHavicdX2UKGgGR7+Yrz5GjKxLaAdLAWgIR0B2aCErXlKcdX2UKGgGR8AMozeoDPnkaAdLMmgIR0B2b04sEq2CdX2UKGgGR8AiZVxS5y2haAdLMmgIR0B2dnaDf3vhdX2UKGgGR8AhOPcSGrS3aAdLMmgIR0B2dbK8tf5UdX2UKGgGR8AhoJhvze41aAdLMmgIR0B2cgI4VARkdX2UKGgGR8AseWcBltj1aAdLMmgIR0B2eIChew9rdX2UKGgGR8AlTOW0JF9baAdLMmgIR0B2f9KCg9NfdX2UKGgGR8AfmlqJuVHGaAdLMmgIR0B2fyZc9nscdX2UKGgGR8AipdUKiO/+aAdLMmgIR0B2e104iosJdWUu"
61
+ },
62
+ "ep_success_buffer": {
63
+ ":type:": "<class 'collections.deque'>",
64
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
65
+ },
66
+ "_n_updates": 1250,
67
+ "n_steps": 20,
68
+ "gamma": 0.95,
69
+ "gae_lambda": 0.95,
70
+ "ent_coef": 0.0001,
71
+ "vf_coef": 0.5,
72
+ "max_grad_norm": 0.5,
73
+ "normalize_advantage": true,
74
+ "observation_space": {
75
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
76
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
77
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
78
+ "_shape": null,
79
+ "dtype": null,
80
+ "_np_random": null
81
+ },
82
+ "action_space": {
83
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
84
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
85
+ "dtype": "float32",
86
+ "bounded_below": "[ True True True True]",
87
+ "bounded_above": "[ True True True True]",
88
+ "_shape": [
89
+ 4
90
+ ],
91
+ "low": "[-1. -1. -1. -1.]",
92
+ "high": "[1. 1. 1. 1.]",
93
+ "low_repr": "-1.0",
94
+ "high_repr": "1.0",
95
+ "_np_random": null
96
+ },
97
+ "n_envs": 4,
98
+ "lr_schedule": {
99
+ ":type:": "<class 'function'>",
100
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
101
+ }
102
+ }
a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e3751dbd57a6e9ed04c9165bd391d8a0f9f2f4106f2d5625873d99fa5187c76
3
+ size 1116195
a2c-PandaPickAndPlaceDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9705fba34af19bc882e0e73ba0e82363b304fd5805d7611d7a99f5a75f288bb
3
+ size 1117667
a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlaceDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [256, 256, 256], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700046972426692380, "learning_rate": 0.01, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2alJvxLuA78WahI+WbzovtztPr8taRI+uq2XvgQjj78WahI+QsMTPttLzT1DahI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaJ2mv6K4vj9/wik/gGS/v+CY1D/EbXY+6EN+P4FcRL0cHIu/fer3Pjk5oz+lAKY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACR8QjAf5VpPifGFb9UJkk+ttCeP66wgD/Zgy2/2alJvxLuA78WahI+x4GfusM4qDt+KmK8VoUdPeDqJD2d13A9whlLvK63H7xqG/q7DIdmvw9f1D5aESu/fNPIvmBA3T8iSU0/EYQtv1m86L7c7T6/LWkSPj0SjrrFG6k7CflhvJMuHj0WYCI9nddwPboZS7zUtx+8pwv0u6FQEL+atAa+LQhAv0yynT9h2ac/au/KPy2ELb+6rZe+BCOPvxZqEj6cgZ+61TioO58rYLxVhR093eokPZ3XcD3CGUu8rrcfvLAb+rukx4w9EFn9vu1yX7+y+B4/6AiMv6TqvL5bYYQ/QsMTPttLzT1DahI+xvSTup37ojsSkIC84tkbPfTbIj3ex3A9PTJKvE85ILzUTwe8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.7877479 -0.5153514 0.14298281]\n [-0.45456198 -0.74581695 0.14297934]\n [-0.2962473 -1.1182561 0.14298281]\n [ 0.14429954 0.10024234 0.14298348]]", "desired_goal": "[[-1.3016787 1.4900095 0.663124 ]\n [-1.4952545 1.6609154 0.2406531 ]\n [ 0.99322367 -0.04793978 -1.0867953 ]\n [ 0.48421088 1.2751838 1.2968947 ]]", "observation": "[[-2.1397440e+00 2.2810934e-01 -5.8505481e-01 1.9643527e-01\n 1.2407444e+00 1.0053918e+00 -6.7779309e-01 -7.8774792e-01\n -5.1535141e-01 1.4298281e-01 -1.2169414e-03 5.1337196e-03\n -1.3804076e-02 3.8457237e-02 4.0263057e-02 5.8799375e-02\n -1.2396278e-02 -9.7483825e-03 -7.6326625e-03]\n [-9.0049815e-01 4.1478774e-01 -6.6823351e-01 -3.9223850e-01\n 1.7285271e+00 8.0189717e-01 -6.7779642e-01 -4.5456198e-01\n -7.4581695e-01 1.4297934e-01 -1.0839176e-03 5.1607811e-03\n -1.3792285e-02 3.8618635e-02 3.9642416e-02 5.8799375e-02\n -1.2396270e-02 -9.7484179e-03 -7.4476781e-03]\n [-5.6373030e-01 -1.3154832e-01 -7.5012475e-01 1.2320037e+00\n 1.3113214e+00 1.5854313e+00 -6.7779809e-01 -2.9624730e-01\n -1.1182561e+00 1.4298281e-01 -1.2169364e-03 5.1337280e-03\n -1.3682275e-02 3.8457233e-02 4.0263046e-02 5.8799375e-02\n -1.2396278e-02 -9.7483825e-03 -7.6326951e-03]\n [ 6.8740159e-02 -4.9482012e-01 -8.7284738e-01 6.2098229e-01\n -1.0940218e+00 -3.6897767e-01 1.0342211e+00 1.4429954e-01\n 1.0024234e-01 1.4298348e-01 -1.1288158e-03 4.9738423e-03\n -1.5693698e-02 3.8049586e-02 3.9760545e-02 5.8784358e-02\n -1.2341079e-02 -9.7792884e-03 -8.2587786e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqE8GPjM0wL0K16M8HVydPZoE970K16M8DuPvO/dGaz0K16M8E0ELu69iSr0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQFpHvU02gT1gZ1U9QUBgvcEPAj4QumE9gVyVPer0Dz4K16M8TTAgPZ2Z8z1GDQ8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqE8GPjM0wL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAB1cnT2aBPe9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAO4+8790ZrPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAE0ELu69iSr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.13116324 -0.09384956 0.02 ]\n [ 0.07683585 -0.12061425 0.02 ]\n [ 0.00732077 0.05744072 0.02 ]\n [-0.00212485 -0.04941052 0.02 ]]", "desired_goal": "[[-0.04867005 0.06309185 0.05210054]\n [-0.05474878 0.12701322 0.05510908]\n [ 0.07293034 0.14058271 0.02 ]\n [ 0.03910856 0.11894534 0.13969907]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31163239e-01\n -9.38495621e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 7.68358484e-02\n -1.20614246e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 7.32076820e-03\n 5.74407242e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -2.12485041e-03\n -4.94105183e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCaSFyq+8GuMAWyUSzKMAXSUR0B1biuhbnoxdX2UKGgGR8Aupuc+aBqcaAdLMmgIR0B1dd45cTrWdX2UKGgGR8AeZ+tr9EThaAdLMmgIR0B1fVs7+1jRdX2UKGgGR8AcqbnX/YJ3aAdLMmgIR0B1fMZ0jkdWdX2UKGgGR8Ak8UC7sfJWaAdLMmgIR0B1eL7ALy+YdX2UKGgGR8AmmiJO32EkaAdLMmgIR0B1f190A93bdX2UKGgGR8ArfyU9pyp8aAdLMmgIR0B1htvGZNO/dX2UKGgGR8Aq5lvIfbKzaAdLMmgIR0B1hjlXA/LUdX2UKGgGR8AXYkt29tdiaAdLMmgIR0B1go4HX2/SdX2UKGgGR8Am5WI42jwhaAdLMmgIR0B1iaX7cfvGdX2UKGgGR8AoGq1gH/tIaAdLMmgIR0B1kPTvy9VWdX2UKGgGR8AHMg4ffXPJaAdLMmgIR0B1kCNFSbYsdX2UKGgGR8AkG9qUNayKaAdLMmgIR0B1jFCF9KEndX2UKGgGR8Aoio1DSgGsaAdLMmgIR0B1k3MfRu0kdX2UKGgGR8Ag7QE6kqMFaAdLMmgIR0B1muilBQendX2UKGgGR8AI3+uNgjQiaAdLMmgIR0B1mg9hZyMldX2UKGgGR8AieTEBKcuraAdLMmgIR0B1ljQUpNKzdX2UKGgGR8AVTxSYPXkHaAdLMmgIR0B1nVcMVk+YdX2UKGgGR8ASGetjkMkQaAdLMmgIR0B1pLQ+lj3FdX2UKGgGR8Ah4SJ0nw5OaAdLMmgIR0B1o8NQTEiudX2UKGgGR8AkKcJdB0IUaAdLMmgIR0B1oA2Q4jrzdX2UKGgGR8AcFNDc/MW5aAdLMmgIR0B1pwCo0hvBdX2UKGgGR8ApCeU6gdwOaAdLMmgIR0B1roi5d4VzdX2UKGgGR8ASnh60IC2daAdLMmgIR0B1ra8cuJ1rdX2UKGgGR8Ast1gYxcmjaAdLMmgIR0B1qgsNDtw8dX2UKGgGR8AeYL0Bfa6CaAdLMmgIR0B1syC9RJmNdX2UKGgGR8Aq+NCqp97XaAdLMmgIR0B1u0rDqGDddX2UKGgGR8Ae19tuUD+zaAdLMmgIR0B1vClnAZbZdX2UKGgGR8AqZWd3B55aaAdLMmgIR0B1ulRCQcPwdX2UKGgGR8AbL7gsK9f1aAdLMmgIR0B1w8exOclPdX2UKGgGR8ALU1uR9w3paAdLMmgIR0B1y+o99tuUdX2UKGgGR8Ak23G4qgAZaAdLMmgIR0B1zBQgs9SudX2UKGgGR8AhvztkWhysaAdLMmgIR0B1ycGfPHDKdX2UKGgGR8AeIczZYgaFaAdLMmgIR0B103ns9jgAdX2UKGgGR8AoXWpZOi35aAdLMmgIR0B123afzz3AdX2UKGgGR8AitYvnKW9laAdLMmgIR0B13K9FnZkDdX2UKGgGR8AXZxQzk6tDaAdLMmgIR0B12o+lj3EidX2UKGgGR8AmrSJj2BataAdLMmgIR0B143cM3IdVdX2UKGgGR8AmMhdMTN+taAdLMmgIR0B162b/ffoBdX2UKGgGR8AhzVJcxCY1aAdLMmgIR0B169NahYeUdX2UKGgGR8AQMHAymALBaAdLMmgIR0B16XBzmwJPdX2UKGgGR8AgTzuF6AvtaAdLMmgIR0B180clw97odX2UKGgGR8AVRz90ihWYaAdLMmgIR0B1+1p0wJw9dX2UKGgGR8ArFb349HMEaAdLMmgIR0B1/JZU1hsqdX2UKGgGR8ARUfW+XZ5BaAdLMmgIR0B1+uxZ+x4ZdX2UKGgGR8AcFLVWjoIOaAdLMmgIR0B2AtOGj9GadX2UKGgGR8AgZlhgE2YOaAdLMmgIR0B2CkrWiDdydX2UKGgGR8AUHl90A93baAdLMmgIR0B2CUXqJMxodX2UKGgGR7+mwPiDM/yHaAdLAWgIR0B2CXdpItlJdX2UKGgGR8AmLsIE8q4IaAdLMmgIR0B2BXr5ZbIMdX2UKGgGR8AWOZCv5gw5aAdLMmgIR0B2DDbItDlYdX2UKGgGR8AhPpN9H+ZPaAdLMmgIR0B2E5lMAWBSdX2UKGgGR8ApoHqNZNfxaAdLMmgIR0B2EsUlAu7IdX2UKGgGR8AZTCSA6MisaAdLMmgIR0B2Dmkk8ifQdX2UKGgGR8Abon0Cih38aAdLMmgIR0B2FVNmDlHSdX2UKGgGR8AXwZjx0+1SaAdLMmgIR0B2HOZhKDkEdX2UKGgGR8Ap8jFhoduHaAdLMmgIR0B2HGQo1DSgdX2UKGgGR8AiLmKZUkv9aAdLMmgIR0B2GGMJhOQAdX2UKGgGR8Ad0BvJiiItaAdLMmgIR0B2HzM0P6KtdX2UKGgGR7+jcO9WZJCjaAdLAWgIR0B2H2XOW0JGdX2UKGgGR8AgCNZNfw7UaAdLMmgIR0B2Joo+fRNRdX2UKGgGR8Apw3PzFuNxaAdLMmgIR0B2Jg4jrzGxdX2UKGgGR8AheO+ZgG8maAdLMmgIR0B2Ie83++/QdX2UKGgGR8AhMB5ooNNKaAdLMmgIR0B2KazfJmuldX2UKGgGR8AepYyO7xusaAdLMmgIR0B2MRP3ztkXdX2UKGgGR8AlIwpvxYq5aAdLMmgIR0B2MHk8zQ/pdX2UKGgGR8BKy5IQOFxoaAdLMmgIR0B2LKdoWYWtdX2UKGgGR8Auahh6Skj5aAdLMmgIR0B2M+6OHWSVdX2UKGgGR8AYq+pOvdM1aAdLMmgIR0B2OxZDArQPdX2UKGgGR8AtQ+i8FpwkaAdLMmgIR0B2OmQ1aW5ZdX2UKGgGR8AalBeHBUJfaAdLMmgIR0B2NnCqIacadX2UKGgGR8AYfd56dDpkaAdLMmgIR0B2PZZ4fOlgdX2UKGgGR8Aj6u6mO2iMaAdLMmgIR0B2ROkpI+W4dX2UKGgGR8AmeVfu1F6SaAdLMmgIR0B2RCoFV1fWdX2UKGgGR8AiJQSBbwBpaAdLMmgIR0B2QEcbR4QjdX2UKGgGR8AlQBV+7UXpaAdLMmgIR0B2R4c7yQPqdX2UKGgGR8Adm00FbFCLaAdLMmgIR0B2Tq3lS0jUdX2UKGgGR8A4a4Z/CqIaaAdLMmgIR0B2TlF6Rhc8dX2UKGgGR8AiexZ+x4Y8aAdLMmgIR0B2SmaOPvKEdX2UKGgGR8AhnOB19v0iaAdLMmgIR0B2Ucn7YTTOdX2UKGgGR8Am9eHBUJfIaAdLMmgIR0B2WTAvcrRTdX2UKGgGR8AvUofjjrAyaAdLMmgIR0B2WGSKWLP2dX2UKGgGR8AbPDYRNATqaAdLMmgIR0B2VEf3evZAdX2UKGgGR8AdqyUs4DLbaAdLMmgIR0B2W4HxBmf5dX2UKGgGR8Al3ndweeWfaAdLMmgIR0B2YqB5HEuQdX2UKGgGR8An+eKbayrxaAdLMmgIR0B2Yi1b7j1gdX2UKGgGR8ArUipNsWO7aAdLMmgIR0B2Xjo0Q9RrdX2UKGgGR8AsfV4oqkM1aAdLMmgIR0B2ZTikwevIdX2UKGgGR8AqualUIcBEaAdLMmgIR0B2bIs9SuQqdX2UKGgGR8Ap0z+FUQ05aAdLMmgIR0B2a9IGyHEddX2UKGgGR8ArddiUgSvlaAdLMmgIR0B2Z/FHavicdX2UKGgGR7+Yrz5GjKxLaAdLAWgIR0B2aCErXlKcdX2UKGgGR8AMozeoDPnkaAdLMmgIR0B2b04sEq2CdX2UKGgGR8AiZVxS5y2haAdLMmgIR0B2dnaDf3vhdX2UKGgGR8AhOPcSGrS3aAdLMmgIR0B2dbK8tf5UdX2UKGgGR8AhoJhvze41aAdLMmgIR0B2cgI4VARkdX2UKGgGR8AseWcBltj1aAdLMmgIR0B2eIChew9rdX2UKGgGR8AlTOW0JF9baAdLMmgIR0B2f9KCg9NfdX2UKGgGR8AfmlqJuVHGaAdLMmgIR0B2fyZc9nscdX2UKGgGR8AipdUKiO/+aAdLMmgIR0B2e104iosJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1250, "n_steps": 20, "gamma": 0.95, "gae_lambda": 0.95, "ent_coef": 0.0001, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (834 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-15T11:22:17.113768"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d88d8ea80a2cd877915d8d887305d92629d3088de75e403d54030cff358611b7
3
+ size 3013