IlluminatiPudding commited on
Commit
1028d8e
1 Parent(s): 2379a40

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlaceDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlaceDense-v3
16
+ type: PandaPickAndPlaceDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -45.00 +/- 15.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlaceDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlaceDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlaceDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eca97ab5ed4891f559da23436dff31ea4940f18b91586afad5032df4b8ed2a7
3
+ size 4464452
a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlaceDense-v3/data ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAk0AAmWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "net_arch": [
16
+ 512,
17
+ 512
18
+ ],
19
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
20
+ "optimizer_kwargs": {
21
+ "alpha": 0.99,
22
+ "eps": 1e-05,
23
+ "weight_decay": 0
24
+ }
25
+ },
26
+ "num_timesteps": 100000,
27
+ "_total_timesteps": 100000.0,
28
+ "_num_timesteps_at_start": 0,
29
+ "seed": null,
30
+ "action_noise": null,
31
+ "start_time": 1700042213997508747,
32
+ "learning_rate": 0.1,
33
+ "tensorboard_log": null,
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAU9U7vndsdb/cegQ+7mO+PggIYj9iewQ+g888QLM+l0B29wDBuOOJP2Zchj/adgQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMtGav4bUrL+RCYi++9pyvxiiUL8hF6U/IrmnP8jcVr+D9oa/t73pPjdwaD+dJWI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADtpya+qBg6PgoYAr8hT4q/pZp8v0uWP7/qRC0/U9U7vndsdb/cegQ+aep9O4oFhLzKxO+7BMk4PZXGdzuJAHo9wYpAu2cTg7zQEQA8G51ePg2Mij8dLA6/Sd+VvzIaQr/3ZcG/NPm5v+5jvj4ICGI/YnsEPoDIeTs9SIS8BBXAu4RBOz0qKHM7fUB5PVAWt7p9ol+8GagDPHIwCT9cLqM9Iq9Jv5EFo77QJpM/Z2uuvWusvb+DzzxAsz6XQHb3AMFT6no7AAAgQWCwrcD9vTg9vZmLO17Dej2Ssqa76pqSvJF6CDxltT8/m2Vovkl9lL76XAtAj/nCv2pmjz9HiTQ/uOOJP2Zchj/adgQ+PumEO7isgrwZpry7leg4PQIggjteAHo9rndAu3ATg7yUywM8lGgOSwRLE4aUaBJ0lFKUdS4=",
37
+ "achieved_goal": "[[-0.18343095 -0.9586863 0.12937492]\n [ 0.37185615 0.88293505 0.12937692]\n [ 2.9501655 4.7264037 -8.060415 ]\n [ 1.0772619 1.0496948 0.12935963]]",
38
+ "desired_goal": "[[-1.2095091 -1.3502357 -0.265698 ]\n [-0.9486539 -0.81497335 1.2897683 ]\n [ 1.3103373 -0.83930635 -1.054398 ]\n [ 0.45652553 0.90796226 0.22084661]]",
39
+ "observation": "[[-1.6274996e-01 1.8173468e-01 -5.0817931e-01 -1.0805398e+00\n -9.8673469e-01 -7.4838704e-01 6.7683280e-01 -1.8343095e-01\n -9.5868629e-01 1.2937492e-01 3.8744456e-03 -1.6115922e-02\n -7.3171603e-03 4.5113578e-02 3.7807573e-03 6.1035667e-02\n -2.9379579e-03 -1.6000463e-02 7.8167468e-03]\n [ 2.1739618e-01 1.0823990e+00 -5.5536062e-01 -1.1708766e+00\n -7.5821221e-01 -1.5109242e+00 -1.4529176e+00 3.7185615e-01\n 8.8293505e-01 1.2937692e-01 3.8113892e-03 -1.6147727e-02\n -5.8618803e-03 4.5716777e-02 3.7102797e-03 6.0852516e-02\n -1.3968442e-03 -1.3649580e-02 8.0356831e-03]\n [ 5.3589547e-01 7.9678267e-02 -7.8782856e-01 -3.1840184e-01\n 1.1496220e+00 -8.5165791e-02 -1.4818243e+00 2.9501655e+00\n 4.7264037e+00 -8.0604153e+00 3.8286641e-03 1.0000000e+01\n -5.4277802e+00 4.5103062e-02 4.2602704e-03 6.1221473e-02\n -5.0872052e-03 -1.7896134e-02 8.3300034e-03]\n [ 7.4886161e-01 -2.2695009e-01 -2.9001835e-01 2.1775498e+00\n -1.5232409e+00 1.1203129e+00 7.0521969e-01 1.0772619e+00\n 1.0496948e+00 1.2935963e-01 4.0561249e-03 -1.5951499e-02\n -5.7571051e-03 4.5143683e-02 3.9711008e-03 6.1035506e-02\n -2.9368210e-03 -1.6000479e-02 8.0441423e-03]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFhvDvRDUTT0K16M8QT6jveGmsj0K16M8MiOrPDjH8D0K16M88eXmvBxZbr0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtfGVvbmAjL1DsGo9DnQOviZ4Fz67tZQ9qwC1PTMtCD5LHQQ9lrGxvUZoYz0UL+M9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAFhvDvRDUTT0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEE+o73hprI9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAyI6s8OMfwPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA8eXmvBxZbr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
48
+ "achieved_goal": "[[-0.09526651 0.05025107 0.02 ]\n [-0.07970858 0.08723236 0.02 ]\n [ 0.02089081 0.11756748 0.02 ]\n [-0.02818582 -0.05819045 0.02 ]]",
49
+ "desired_goal": "[[-0.07321493 -0.06860489 0.057297 ]\n [-0.13911459 0.14791927 0.07261225]\n [ 0.08838018 0.13298492 0.0322545 ]\n [-0.0867645 0.05551936 0.11092964]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.5266506e-02\n 5.0251067e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -7.9708584e-02\n 8.7232359e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0890806e-02\n 1.1756748e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.8185816e-02\n -5.8190450e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwC6iiM5wOvuMAWyUSzKMAXSUR0B3IzEJjUd8dX2UKGgGR8APcgpz90ihaAdLMmgIR0B3Lzs6aLGadX2UKGgGR8AdHUmUnogWaAdLMmgIR0B3Kc68xsVMdX2UKGgGR8Ag1ArQPZqVaAdLMmgIR0B3MMCGN70GdX2UKGgGR8AovxqfvnbJaAdLMmgIR0B3LQb70nPWdX2UKGgGR8Ak4ZJCjUNKaAdLMmgIR0B3OKoCMglodX2UKGgGR8AuUGnGbTc7aAdLMmgIR0B3M24UeuFIdX2UKGgGR8AYtRAKOT7maAdLMmgIR0B3OoEJSiuddX2UKGgGR8AqGhK15Sm7aAdLMmgIR0B3Ns8HObAldX2UKGgGR8AgyEug6EJ0aAdLMmgIR0B3QxDCxeLOdX2UKGgGR8Aqj1SwW3z+aAdLMmgIR0B3PbTF2mpEdX2UKGgGR8Anam0E5hjOaAdLMmgIR0B3RHkjopx4dX2UKGgGR8AZofJV81GcaAdLMmgIR0B3QN6po9LYdX2UKGgGR8AYS9K28Zk1aAdLMmgIR0B3TNpM6BAfdX2UKGgGR8AMon4O+ZgHaAdLMmgIR0B3R8r3Cbc5dX2UKGgGR8AssibDuSfUaAdLMmgIR0B3TxsoDxLCdX2UKGgGR8ArA8TSLIgeaAdLMmgIR0B3S1NSIgvEdX2UKGgGR8AsOD/VAiV0aAdLMmgIR0B3V0sVclgMdX2UKGgGR8ANLtE5QxetaAdLMmgIR0B3UeZ/kNnXdX2UKGgGR8As8kfs/pt8aAdLMmgIR0B3WJUGVzIWdX2UKGgGR8AdmI/JNj9XaAdLMmgIR0B3VP6pHZsbdX2UKGgGR8ALcFlkH2RJaAdLMmgIR0B3YH6ZYxL1dX2UKGgGR8Ae29kBjnV5aAdLMmgIR0B3W0pG4I8hdX2UKGgGR8AI/smfGuLaaAdLMmgIR0B3YrN8ma6SdX2UKGgGR8AmMJeE7GNraAdLMmgIR0B3XzvH93r2dX2UKGgGR8AwgYht+CsfaAdLMmgIR0B3a1bB42S/dX2UKGgGR8A3FRw6ySmqaAdLMmgIR0B3Zg287IT5dX2UKGgGR8Aniq6OHWSVaAdLMmgIR0B3bTIFNcnmdX2UKGgGR8Apv9XtBv74aAdLMmgIR0B3ahUlzEJjdX2UKGgGR8Ad+WY4Qz1saAdLMmgIR0B3dc8uBczJdX2UKGgGR8Am25QP7N0OaAdLMmgIR0B3cKkl/pdKdX2UKGgGR8AeUwco6S1WaAdLMmgIR0B3dzJZGKAKdX2UKGgGR8ApQ5Yoy9EkaAdLMmgIR0B3c00j1PFedX2UKGgGR8Aga5rgwXZXaAdLMmgIR0B3f0YR/ViGdX2UKGgGR8AZxuQ6p5u7aAdLMmgIR0B3efVx0dR0dX2UKGgGR8AmVxVhkRSQaAdLMmgIR0B3gO/TLGJfdX2UKGgGR8Ahe3trsSkCaAdLMmgIR0B3fVY9xIatdX2UKGgGR8AnneUpuuRtaAdLMmgIR0B3iMqBmPHUdX2UKGgGR8AXW2KEWZZ0aAdLMmgIR0B3g46o2n89dX2UKGgGR8AX5wsGxD9gaAdLMmgIR0B3iiwqy4WldX2UKGgGR8AkHT6zmfXgaAdLMmgIR0B3hoRJ2+wldX2UKGgGR8AbVWQwK0D2aAdLMmgIR0B3kjTTfBN3dX2UKGgGR8Ag7Drqt5lfaAdLMmgIR0B3jMOe8PFvdX2UKGgGR8A7fxgiNbTuaAdLMmgIR0B3k/rAxi5NdX2UKGgGR8AfpayKNyYHaAdLMmgIR0B3kI8RtgrpdX2UKGgGR8AildHlOoHcaAdLMmgIR0B3nApPRArydX2UKGgGR8Ar8HDaXa8IaAdLMmgIR0B3lvkZJkGzdX2UKGgGR8AsjrTpgTh6aAdLMmgIR0B3nWVu76HkdX2UKGgGR8As/9F4LThHaAdLMmgIR0B3mXUBnzxxdX2UKGgGR8AjDYraufVaaAdLMmgIR0B3pSevpyIYdX2UKGgGR8ASBMM7U5MlaAdLMmgIR0B3n7I2fkFOdX2UKGgGR8ASwVuaWom5aAdLMmgIR0B3pqJKraM8dX2UKGgGR8AjOTcqOLiuaAdLMmgIR0B3oyaRZEDydX2UKGgGR8AeGFL39JjEaAdLMmgIR0B3rtWsA/9pdX2UKGgGR8Ar6oYvWYnfaAdLMmgIR0B3qbvgFX7tdX2UKGgGR8AO5h8YyfthaAdLMmgIR0B3sJtrKvFFdX2UKGgGR8ANvoHLRrrPaAdLMmgIR0B3rOBGx2SudX2UKGgGR8AsF5/smfGuaAdLMmgIR0B3uLiCJ40NdX2UKGgGR8ApjVPN3W4FaAdLMmgIR0B3s0u/UONHdX2UKGgGR8AWaSidrftQaAdLMmgIR0B3ucO2AoXsdX2UKGgGR8AibZf2K2roaAdLMmgIR0B3tiqMm4RVdX2UKGgGR8AjXDxb0OEvaAdLMmgIR0B3we9i+cpcdX2UKGgGR8AYv8WKuSwGaAdLMmgIR0B3vLra/RE4dX2UKGgGR8AhAeZG8VYZaAdLMmgIR0B3w/WI42jxdX2UKGgGR8ATANb1RLsbaAdLMmgIR0B3wBQhwEQodX2UKGgGR8AlHI91U2k0aAdLMmgIR0B3y8LiMo+fdX2UKGgGR8AhpfShJyyVaAdLMmgIR0B3xmFAVwgldX2UKGgGR8Ae46RyOq//aAdLMmgIR0B3z49IPK+0dX2UKGgGR8Aly052hZhbaAdLMmgIR0B3zWr2g398dX2UKGgGR8BF1Bxo7FKkaAdLMmgIR0B32tM/QjUvdX2UKGgGR8Amilgtvn8saAdLMmgIR0B31kpc5bQkdX2UKGgGR8AmtrWy1NQCaAdLMmgIR0B332U3XI2gdX2UKGgGR8AtvNg0CRwIaAdLMmgIR0B33Qf/3nIRdX2UKGgGR8Af7e+Eh7mdaAdLMmgIR0B36tlnRLK3dX2UKGgGR8BFR9c0Ltu2aAdLMmgIR0B35ebe/Ho6dX2UKGgGR8AUvbzshPj5aAdLMmgIR0B37rZnL7oCdX2UKGgGR8Ae86/7BO58aAdLMmgIR0B37EZm7J4jdX2UKGgGR8AI0VYZEUj+aAdLMmgIR0B3+a42CNCJdX2UKGgGR8AoavJRwZO0aAdLMmgIR0B39THLidaudX2UKGgGR8AjpcVQAMlUaAdLMmgIR0B3/iWTot+TdX2UKGgGR8AUSrxRVIZqaAdLMmgIR0B3+2Hh0hePdX2UKGgGR8AgIeRPoFFEaAdLMmgIR0B4CRb2USqVdX2UKGgGR8AZKcvugHu7aAdLMmgIR0B4BCloDgZTdX2UKGgGR7+Zmukk8ifQaAdLAWgIR0B4BGwNb1RMdX2UKGgGR8AjXNFjNIK/aAdLMmgIR0B4DTp5eJHidX2UKGgGR8A3VFyaNMoMaAdLMmgIR0B4Cvz+WGATdX2UKGgGR8AswFM7EHdHaAdLMmgIR0B4GLp5eJHidX2UKGgGR8AS1p35eqrBaAdLMmgIR0B4FLTG5tm+dX2UKGgGR8AuD4k/r0J4aAdLMmgIR0B4HmeOGTLXdX2UKGgGR8Ak+704BFNMaAdLMmgIR0B4Gq6jFhoedX2UKGgGR8AjkZ0jkdWAaAdLMmgIR0B4JmZjQRf4dX2UKGgGR7+f7Jnxri2laAdLAWgIR0B4Jpf9gnc+dX2UKGgGR8Aok08/2TPjaAdLMmgIR0B4ITEcbR4RdX2UKGgGR8AjD974SHuaaAdLMmgIR0B4J+PDHfdidX2UKGgGR8AhIJyhi9ZiaAdLMmgIR0B4JBrhzeXSdX2UKGgGR8AaUQiA2AG0aAdLMmgIR0B4MEVafSQYdX2UKGgGR8AwDck+otL+aAdLMmgIR0B4KvvfCQ9zdX2UKGgGR7+N/rjYI0IkaAdLAWgIR0B4Ky9i+cpcdX2UKGgGR8Aru02LpA2RaAdLMmgIR0B4MaQ8wHqvdX2UKGgGR8AiceZG8VYZaAdLMmgIR0B4LcuAZsKtdWUu"
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 1250,
66
+ "n_steps": 20,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 0.95,
69
+ "ent_coef": 0.01,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": true,
73
+ "observation_space": {
74
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
76
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
83
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
84
+ "dtype": "float32",
85
+ "bounded_below": "[ True True True True]",
86
+ "bounded_above": "[ True True True True]",
87
+ "_shape": [
88
+ 4
89
+ ],
90
+ "low": "[-1. -1. -1. -1.]",
91
+ "high": "[1. 1. 1. 1.]",
92
+ "low_repr": "-1.0",
93
+ "high_repr": "1.0",
94
+ "_np_random": null
95
+ },
96
+ "n_envs": 4,
97
+ "lr_schedule": {
98
+ ":type:": "<class 'function'>",
99
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
100
+ }
101
+ }
a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e727a062a72aac6f40290b9761d1c772f2dca5d14ace41b8926b26af403304ea
3
+ size 2222063
a2c-PandaPickAndPlaceDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:042a59aebbbd6327afdd288115f5deb774d29d96a5557d066c4a8984474fb98f
3
+ size 2223343
a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlaceDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cad8f027b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cad8ee2db40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAk0AAmWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [512, 512], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700042213997508747, "learning_rate": 0.1, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAU9U7vndsdb/cegQ+7mO+PggIYj9iewQ+g888QLM+l0B29wDBuOOJP2Zchj/adgQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMtGav4bUrL+RCYi++9pyvxiiUL8hF6U/IrmnP8jcVr+D9oa/t73pPjdwaD+dJWI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADtpya+qBg6PgoYAr8hT4q/pZp8v0uWP7/qRC0/U9U7vndsdb/cegQ+aep9O4oFhLzKxO+7BMk4PZXGdzuJAHo9wYpAu2cTg7zQEQA8G51ePg2Mij8dLA6/Sd+VvzIaQr/3ZcG/NPm5v+5jvj4ICGI/YnsEPoDIeTs9SIS8BBXAu4RBOz0qKHM7fUB5PVAWt7p9ol+8GagDPHIwCT9cLqM9Iq9Jv5EFo77QJpM/Z2uuvWusvb+DzzxAsz6XQHb3AMFT6no7AAAgQWCwrcD9vTg9vZmLO17Dej2Ssqa76pqSvJF6CDxltT8/m2Vovkl9lL76XAtAj/nCv2pmjz9HiTQ/uOOJP2Zchj/adgQ+PumEO7isgrwZpry7leg4PQIggjteAHo9rndAu3ATg7yUywM8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.18343095 -0.9586863 0.12937492]\n [ 0.37185615 0.88293505 0.12937692]\n [ 2.9501655 4.7264037 -8.060415 ]\n [ 1.0772619 1.0496948 0.12935963]]", "desired_goal": "[[-1.2095091 -1.3502357 -0.265698 ]\n [-0.9486539 -0.81497335 1.2897683 ]\n [ 1.3103373 -0.83930635 -1.054398 ]\n [ 0.45652553 0.90796226 0.22084661]]", "observation": "[[-1.6274996e-01 1.8173468e-01 -5.0817931e-01 -1.0805398e+00\n -9.8673469e-01 -7.4838704e-01 6.7683280e-01 -1.8343095e-01\n -9.5868629e-01 1.2937492e-01 3.8744456e-03 -1.6115922e-02\n -7.3171603e-03 4.5113578e-02 3.7807573e-03 6.1035667e-02\n -2.9379579e-03 -1.6000463e-02 7.8167468e-03]\n [ 2.1739618e-01 1.0823990e+00 -5.5536062e-01 -1.1708766e+00\n -7.5821221e-01 -1.5109242e+00 -1.4529176e+00 3.7185615e-01\n 8.8293505e-01 1.2937692e-01 3.8113892e-03 -1.6147727e-02\n -5.8618803e-03 4.5716777e-02 3.7102797e-03 6.0852516e-02\n -1.3968442e-03 -1.3649580e-02 8.0356831e-03]\n [ 5.3589547e-01 7.9678267e-02 -7.8782856e-01 -3.1840184e-01\n 1.1496220e+00 -8.5165791e-02 -1.4818243e+00 2.9501655e+00\n 4.7264037e+00 -8.0604153e+00 3.8286641e-03 1.0000000e+01\n -5.4277802e+00 4.5103062e-02 4.2602704e-03 6.1221473e-02\n -5.0872052e-03 -1.7896134e-02 8.3300034e-03]\n [ 7.4886161e-01 -2.2695009e-01 -2.9001835e-01 2.1775498e+00\n -1.5232409e+00 1.1203129e+00 7.0521969e-01 1.0772619e+00\n 1.0496948e+00 1.2935963e-01 4.0561249e-03 -1.5951499e-02\n -5.7571051e-03 4.5143683e-02 3.9711008e-03 6.1035506e-02\n -2.9368210e-03 -1.6000479e-02 8.0441423e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFhvDvRDUTT0K16M8QT6jveGmsj0K16M8MiOrPDjH8D0K16M88eXmvBxZbr0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtfGVvbmAjL1DsGo9DnQOviZ4Fz67tZQ9qwC1PTMtCD5LHQQ9lrGxvUZoYz0UL+M9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAFhvDvRDUTT0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEE+o73hprI9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAyI6s8OMfwPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA8eXmvBxZbr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.09526651 0.05025107 0.02 ]\n [-0.07970858 0.08723236 0.02 ]\n [ 0.02089081 0.11756748 0.02 ]\n [-0.02818582 -0.05819045 0.02 ]]", "desired_goal": "[[-0.07321493 -0.06860489 0.057297 ]\n [-0.13911459 0.14791927 0.07261225]\n [ 0.08838018 0.13298492 0.0322545 ]\n [-0.0867645 0.05551936 0.11092964]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.5266506e-02\n 5.0251067e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -7.9708584e-02\n 8.7232359e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0890806e-02\n 1.1756748e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.8185816e-02\n -5.8190450e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwC6iiM5wOvuMAWyUSzKMAXSUR0B3IzEJjUd8dX2UKGgGR8APcgpz90ihaAdLMmgIR0B3Lzs6aLGadX2UKGgGR8AdHUmUnogWaAdLMmgIR0B3Kc68xsVMdX2UKGgGR8Ag1ArQPZqVaAdLMmgIR0B3MMCGN70GdX2UKGgGR8AovxqfvnbJaAdLMmgIR0B3LQb70nPWdX2UKGgGR8Ak4ZJCjUNKaAdLMmgIR0B3OKoCMglodX2UKGgGR8AuUGnGbTc7aAdLMmgIR0B3M24UeuFIdX2UKGgGR8AYtRAKOT7maAdLMmgIR0B3OoEJSiuddX2UKGgGR8AqGhK15Sm7aAdLMmgIR0B3Ns8HObAldX2UKGgGR8AgyEug6EJ0aAdLMmgIR0B3QxDCxeLOdX2UKGgGR8Aqj1SwW3z+aAdLMmgIR0B3PbTF2mpEdX2UKGgGR8Anam0E5hjOaAdLMmgIR0B3RHkjopx4dX2UKGgGR8AZofJV81GcaAdLMmgIR0B3QN6po9LYdX2UKGgGR8AYS9K28Zk1aAdLMmgIR0B3TNpM6BAfdX2UKGgGR8AMon4O+ZgHaAdLMmgIR0B3R8r3Cbc5dX2UKGgGR8AssibDuSfUaAdLMmgIR0B3TxsoDxLCdX2UKGgGR8ArA8TSLIgeaAdLMmgIR0B3S1NSIgvEdX2UKGgGR8AsOD/VAiV0aAdLMmgIR0B3V0sVclgMdX2UKGgGR8ANLtE5QxetaAdLMmgIR0B3UeZ/kNnXdX2UKGgGR8As8kfs/pt8aAdLMmgIR0B3WJUGVzIWdX2UKGgGR8AdmI/JNj9XaAdLMmgIR0B3VP6pHZsbdX2UKGgGR8ALcFlkH2RJaAdLMmgIR0B3YH6ZYxL1dX2UKGgGR8Ae29kBjnV5aAdLMmgIR0B3W0pG4I8hdX2UKGgGR8AI/smfGuLaaAdLMmgIR0B3YrN8ma6SdX2UKGgGR8AmMJeE7GNraAdLMmgIR0B3XzvH93r2dX2UKGgGR8AwgYht+CsfaAdLMmgIR0B3a1bB42S/dX2UKGgGR8A3FRw6ySmqaAdLMmgIR0B3Zg287IT5dX2UKGgGR8Aniq6OHWSVaAdLMmgIR0B3bTIFNcnmdX2UKGgGR8Apv9XtBv74aAdLMmgIR0B3ahUlzEJjdX2UKGgGR8Ad+WY4Qz1saAdLMmgIR0B3dc8uBczJdX2UKGgGR8Am25QP7N0OaAdLMmgIR0B3cKkl/pdKdX2UKGgGR8AeUwco6S1WaAdLMmgIR0B3dzJZGKAKdX2UKGgGR8ApQ5Yoy9EkaAdLMmgIR0B3c00j1PFedX2UKGgGR8Aga5rgwXZXaAdLMmgIR0B3f0YR/ViGdX2UKGgGR8AZxuQ6p5u7aAdLMmgIR0B3efVx0dR0dX2UKGgGR8AmVxVhkRSQaAdLMmgIR0B3gO/TLGJfdX2UKGgGR8Ahe3trsSkCaAdLMmgIR0B3fVY9xIatdX2UKGgGR8AnneUpuuRtaAdLMmgIR0B3iMqBmPHUdX2UKGgGR8AXW2KEWZZ0aAdLMmgIR0B3g46o2n89dX2UKGgGR8AX5wsGxD9gaAdLMmgIR0B3iiwqy4WldX2UKGgGR8AkHT6zmfXgaAdLMmgIR0B3hoRJ2+wldX2UKGgGR8AbVWQwK0D2aAdLMmgIR0B3kjTTfBN3dX2UKGgGR8Ag7Drqt5lfaAdLMmgIR0B3jMOe8PFvdX2UKGgGR8A7fxgiNbTuaAdLMmgIR0B3k/rAxi5NdX2UKGgGR8AfpayKNyYHaAdLMmgIR0B3kI8RtgrpdX2UKGgGR8AildHlOoHcaAdLMmgIR0B3nApPRArydX2UKGgGR8Ar8HDaXa8IaAdLMmgIR0B3lvkZJkGzdX2UKGgGR8AsjrTpgTh6aAdLMmgIR0B3nWVu76HkdX2UKGgGR8As/9F4LThHaAdLMmgIR0B3mXUBnzxxdX2UKGgGR8AjDYraufVaaAdLMmgIR0B3pSevpyIYdX2UKGgGR8ASBMM7U5MlaAdLMmgIR0B3n7I2fkFOdX2UKGgGR8ASwVuaWom5aAdLMmgIR0B3pqJKraM8dX2UKGgGR8AjOTcqOLiuaAdLMmgIR0B3oyaRZEDydX2UKGgGR8AeGFL39JjEaAdLMmgIR0B3rtWsA/9pdX2UKGgGR8Ar6oYvWYnfaAdLMmgIR0B3qbvgFX7tdX2UKGgGR8AO5h8YyfthaAdLMmgIR0B3sJtrKvFFdX2UKGgGR8ANvoHLRrrPaAdLMmgIR0B3rOBGx2SudX2UKGgGR8AsF5/smfGuaAdLMmgIR0B3uLiCJ40NdX2UKGgGR8ApjVPN3W4FaAdLMmgIR0B3s0u/UONHdX2UKGgGR8AWaSidrftQaAdLMmgIR0B3ucO2AoXsdX2UKGgGR8AibZf2K2roaAdLMmgIR0B3tiqMm4RVdX2UKGgGR8AjXDxb0OEvaAdLMmgIR0B3we9i+cpcdX2UKGgGR8AYv8WKuSwGaAdLMmgIR0B3vLra/RE4dX2UKGgGR8AhAeZG8VYZaAdLMmgIR0B3w/WI42jxdX2UKGgGR8ATANb1RLsbaAdLMmgIR0B3wBQhwEQodX2UKGgGR8AlHI91U2k0aAdLMmgIR0B3y8LiMo+fdX2UKGgGR8AhpfShJyyVaAdLMmgIR0B3xmFAVwgldX2UKGgGR8Ae46RyOq//aAdLMmgIR0B3z49IPK+0dX2UKGgGR8Aly052hZhbaAdLMmgIR0B3zWr2g398dX2UKGgGR8BF1Bxo7FKkaAdLMmgIR0B32tM/QjUvdX2UKGgGR8Amilgtvn8saAdLMmgIR0B31kpc5bQkdX2UKGgGR8AmtrWy1NQCaAdLMmgIR0B332U3XI2gdX2UKGgGR8AtvNg0CRwIaAdLMmgIR0B33Qf/3nIRdX2UKGgGR8Af7e+Eh7mdaAdLMmgIR0B36tlnRLK3dX2UKGgGR8BFR9c0Ltu2aAdLMmgIR0B35ebe/Ho6dX2UKGgGR8AUvbzshPj5aAdLMmgIR0B37rZnL7oCdX2UKGgGR8Ae86/7BO58aAdLMmgIR0B37EZm7J4jdX2UKGgGR8AI0VYZEUj+aAdLMmgIR0B3+a42CNCJdX2UKGgGR8AoavJRwZO0aAdLMmgIR0B39THLidaudX2UKGgGR8AjpcVQAMlUaAdLMmgIR0B3/iWTot+TdX2UKGgGR8AUSrxRVIZqaAdLMmgIR0B3+2Hh0hePdX2UKGgGR8AgIeRPoFFEaAdLMmgIR0B4CRb2USqVdX2UKGgGR8AZKcvugHu7aAdLMmgIR0B4BCloDgZTdX2UKGgGR7+Zmukk8ifQaAdLAWgIR0B4BGwNb1RMdX2UKGgGR8AjXNFjNIK/aAdLMmgIR0B4DTp5eJHidX2UKGgGR8A3VFyaNMoMaAdLMmgIR0B4Cvz+WGATdX2UKGgGR8AswFM7EHdHaAdLMmgIR0B4GLp5eJHidX2UKGgGR8AS1p35eqrBaAdLMmgIR0B4FLTG5tm+dX2UKGgGR8AuD4k/r0J4aAdLMmgIR0B4HmeOGTLXdX2UKGgGR8Ak+704BFNMaAdLMmgIR0B4Gq6jFhoedX2UKGgGR8AjkZ0jkdWAaAdLMmgIR0B4JmZjQRf4dX2UKGgGR7+f7Jnxri2laAdLAWgIR0B4Jpf9gnc+dX2UKGgGR8Aok08/2TPjaAdLMmgIR0B4ITEcbR4RdX2UKGgGR8AjD974SHuaaAdLMmgIR0B4J+PDHfdidX2UKGgGR8AhIJyhi9ZiaAdLMmgIR0B4JBrhzeXSdX2UKGgGR8AaUQiA2AG0aAdLMmgIR0B4MEVafSQYdX2UKGgGR8AwDck+otL+aAdLMmgIR0B4KvvfCQ9zdX2UKGgGR7+N/rjYI0IkaAdLAWgIR0B4Ky9i+cpcdX2UKGgGR8Aru02LpA2RaAdLMmgIR0B4MaQ8wHqvdX2UKGgGR8AiceZG8VYZaAdLMmgIR0B4LcuAZsKtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1250, "n_steps": 20, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48e0aee740304bbc1f718745b559d4105728c55b4de633f0fa10fbcbb912d5f3
3
+ size 1038365
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-15T10:03:56.933457"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af65294a05a8db155ebef11f2fa51fb1aa445aaa018f8d3f92f6de02e1662824
3
+ size 3013