IlluminatiPudding commited on
Commit
eb505e9
1 Parent(s): f174e84

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e83810cae88fa5a54d97ac518b96cc67d6085a52222b188bf8e103a4e3da4efe
3
+ size 124212
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c575ed9ec20>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c575eda1700>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699611397794857047,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqyEwP7Alw779HPo98EuYvEkpSb9QIPo9iN7UPjYqYj6GIPo9xttwvrBN077RIfo9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3GClPy+VdL+e88A/0ffEPy/cWL9CtIu/GHdqP1AFYjxPo1U/iZ22Pzj8pj+2SqU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADkIDc/HKQlvxeAUb46aBE/2uW8P3QUhr+v3SC/qyEwP7Alw779HPo9tFZKvIENT7x0LIG695cYPfS7rDymbnw9x7kyvGw5nrzJcQ08+UCpPSUchL8y9Jy+qNWZPzgqhj8ECdU/hs+jvvBLmLxJKUm/UCD6PcehSrwXHFW81GoauvsXFz1W+qs89i97PRYFMrySnK28hVgPPOkoQD9kypG7GvNSu9Ygqz68MZs/KDyrvxfsIb+I3tQ+NipiPoYg+j08YEq8JmdUvI0okLppKxo9dY+rPO69ez0nRx28CEeOvLQYDTzW0o4+4D7nu+YmAj79r+u+RuXxPdI4AMDACyK/xttwvrBN077RIfo9K1RKvNBwUbwItly6xm4YPRZXrTxnaHw9xrkyvGvsnbwpeQ88lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.68801373 -0.3811469 0.1221256 ]\n [-0.0185909 -0.7857862 0.12213194]\n [ 0.41576028 0.22086415 0.12213235]\n [-0.23521337 -0.41270208 0.12213481]]",
34
+ "desired_goal": "[[ 1.2920184 -0.95540136 1.5074346 ]\n [ 1.5388128 -0.84710974 -1.0914385 ]\n [ 0.9158797 0.01379521 0.83452314]\n [ 1.4266826 1.3045721 1.2913425 ]]",
35
+ "observation": "[[ 7.15345621e-01 -6.47035360e-01 -2.04590186e-01 5.67996621e-01\n 1.47576451e+00 -1.04749918e+00 -6.28382623e-01 6.88013732e-01\n -3.81146908e-01 1.22125603e-01 -1.23497732e-02 -1.26374969e-02\n -9.85516701e-04 3.72543000e-02 2.10857168e-02 6.16289601e-02\n -1.09085506e-02 -1.93144903e-02 8.63308553e-03]\n [ 8.26434568e-02 -1.03210890e+00 -3.06550562e-01 1.20183277e+00\n 1.04816341e+00 1.66433764e+00 -3.19942653e-01 -1.85908973e-02\n -7.85786211e-01 1.22131944e-01 -1.23676723e-02 -1.30071854e-02\n -5.89055242e-04 3.68881039e-02 2.09933929e-02 6.13250360e-02\n -1.08654704e-02 -2.11928226e-02 8.74913204e-03]\n [ 7.50624239e-01 -4.44917567e-03 -3.21883569e-03 3.34234893e-01\n 1.21245527e+00 -1.33777332e+00 -6.32508695e-01 4.15760279e-01\n 2.20864147e-01 1.22132346e-01 -1.23520456e-02 -1.29640456e-02\n -1.09984132e-03 3.76390554e-02 2.09424291e-02 6.14604279e-02\n -9.59948357e-03 -1.73678547e-02 8.61184672e-03]\n [ 2.78952301e-01 -7.05705583e-03 1.27101511e-01 -4.60327059e-01\n 1.18113086e-01 -2.00346804e+00 -6.32991791e-01 -2.35213369e-01\n -4.12702084e-01 1.22134812e-01 -1.23491688e-02 -1.27832443e-02\n -8.41945875e-04 3.72150168e-02 2.11596899e-02 6.16230033e-02\n -1.09085497e-02 -1.92777719e-02 8.75691418e-03]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOekLPg4Jzb0K16M8Sr/zPZMbDT4K16M8smQLPRxYAr4K16M8xI++PfXOsb0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZWfGPa5xZLw5F6Q9GkzJvU6NEr1nRRs+iS2pvQIbibwK16M8zxDvPBtZGb4bAQs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOekLPg4Jzb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEq/8z2TGw0+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACyZAs9HFgCvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAxI++PfXOsb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.13663186 -0.10011493 0.02 ]\n [ 0.1190172 0.1378005 0.02 ]\n [ 0.03403158 -0.12728924 0.02 ]\n [ 0.09304765 -0.08682052 0.02 ]]",
45
+ "desired_goal": "[[ 0.0968769 -0.01394312 0.08012242]\n [-0.09828968 -0.03577929 0.15163194]\n [-0.08260638 -0.01673651 0.02 ]\n [ 0.02918282 -0.14975397 0.1357464 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3663186e-01\n -1.0011493e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1901720e-01\n 1.3780050e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.4031577e-02\n -1.2728924e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.3047649e-02\n -8.6820520e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cub3FrEcbSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucE6lk6LgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cub39M9KVZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cub24NRWLhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucM+05U97dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucaFeF+NMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucNLF4s3AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucMPuogmrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuchdO6/ZedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cucud25hBrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuchzuOS4fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuchmh24d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc26XSjQBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudDvIGQjmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc3GCiAUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc2GnO0LMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudLByCFsYdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CudLlNL128dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudX8KohpydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudLGFajesdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudKDD8+A3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cudfk/B3zMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudrqvFFUidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cude4mb9ZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudiCpvP1MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cud8lPBSDRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueMBakhzOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueAPikwevdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueDLPt2LYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuecLQw9JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuerKbBoEkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuefOf29L6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueiFq8DjjdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CueiyiudPMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cue7tvGZNPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cue8XLV4HHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufLK/dqL1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cue/l3Y+SsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufEGNaQmvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufeSq+8GtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cufrb212JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufeqH446wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufdvPkaMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufzSntOVPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuf/HX2/SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufyO2y9mIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufxfiYLLIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugHJKaodddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugS9Kujh2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugGIGhVU/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugFl5nlGPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugbVx82JjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugnSi/O+qdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CugnsEidJ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugakFGG21dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugagq/dqMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugv0jTrmhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cug8BNVR1pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuguuZ9d/sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugt5Etuk2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhDbF85S4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhQEoOQQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhC0Zm7J5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhCT/ACXAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhXvoFFDwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuhj8+JP69dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhWpz90ihdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhWMl9jPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhsCyY5T7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh4enZTQ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhrSO7xusdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuhq6O5rgwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiAM4tHx0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiMtTtLL7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh/jJ+2E1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh/8cENe/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiWDpcHGCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiibCrLhadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiVSc0+C9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiUslb/wRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuiqpj2BatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui3FwcYIjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuip8YZVGTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuipkGA09AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui/TL4etCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujLmLk0aZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui+a+WWyDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui+Ibn5i3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujTpM6BAfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cujf5xJd0JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujSoMa0hNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujSmtyPuHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujoBTn7pFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj0xdhRZVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cujnqk2xY8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujnEona37dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj8TdcjZ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CukIayjYZmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj7KiO/+LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj6sEA5q/dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:888e979a1a3d1ca9cc136ce117a4366639ee5d16869a3f0209d1d3ab2496bbcc
3
+ size 51951
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1223c68bd05b0f5a7143a1418e05038fae9ee31061a59a591785802fc07fcf43
3
+ size 53231
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c575ed9ec20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c575eda1700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699611397794857047, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqyEwP7Alw779HPo98EuYvEkpSb9QIPo9iN7UPjYqYj6GIPo9xttwvrBN077RIfo9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3GClPy+VdL+e88A/0ffEPy/cWL9CtIu/GHdqP1AFYjxPo1U/iZ22Pzj8pj+2SqU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADkIDc/HKQlvxeAUb46aBE/2uW8P3QUhr+v3SC/qyEwP7Alw779HPo9tFZKvIENT7x0LIG695cYPfS7rDymbnw9x7kyvGw5nrzJcQ08+UCpPSUchL8y9Jy+qNWZPzgqhj8ECdU/hs+jvvBLmLxJKUm/UCD6PcehSrwXHFW81GoauvsXFz1W+qs89i97PRYFMrySnK28hVgPPOkoQD9kypG7GvNSu9Ygqz68MZs/KDyrvxfsIb+I3tQ+NipiPoYg+j08YEq8JmdUvI0okLppKxo9dY+rPO69ez0nRx28CEeOvLQYDTzW0o4+4D7nu+YmAj79r+u+RuXxPdI4AMDACyK/xttwvrBN077RIfo9K1RKvNBwUbwItly6xm4YPRZXrTxnaHw9xrkyvGvsnbwpeQ88lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.68801373 -0.3811469 0.1221256 ]\n [-0.0185909 -0.7857862 0.12213194]\n [ 0.41576028 0.22086415 0.12213235]\n [-0.23521337 -0.41270208 0.12213481]]", "desired_goal": "[[ 1.2920184 -0.95540136 1.5074346 ]\n [ 1.5388128 -0.84710974 -1.0914385 ]\n [ 0.9158797 0.01379521 0.83452314]\n [ 1.4266826 1.3045721 1.2913425 ]]", "observation": "[[ 7.15345621e-01 -6.47035360e-01 -2.04590186e-01 5.67996621e-01\n 1.47576451e+00 -1.04749918e+00 -6.28382623e-01 6.88013732e-01\n -3.81146908e-01 1.22125603e-01 -1.23497732e-02 -1.26374969e-02\n -9.85516701e-04 3.72543000e-02 2.10857168e-02 6.16289601e-02\n -1.09085506e-02 -1.93144903e-02 8.63308553e-03]\n [ 8.26434568e-02 -1.03210890e+00 -3.06550562e-01 1.20183277e+00\n 1.04816341e+00 1.66433764e+00 -3.19942653e-01 -1.85908973e-02\n -7.85786211e-01 1.22131944e-01 -1.23676723e-02 -1.30071854e-02\n -5.89055242e-04 3.68881039e-02 2.09933929e-02 6.13250360e-02\n -1.08654704e-02 -2.11928226e-02 8.74913204e-03]\n [ 7.50624239e-01 -4.44917567e-03 -3.21883569e-03 3.34234893e-01\n 1.21245527e+00 -1.33777332e+00 -6.32508695e-01 4.15760279e-01\n 2.20864147e-01 1.22132346e-01 -1.23520456e-02 -1.29640456e-02\n -1.09984132e-03 3.76390554e-02 2.09424291e-02 6.14604279e-02\n -9.59948357e-03 -1.73678547e-02 8.61184672e-03]\n [ 2.78952301e-01 -7.05705583e-03 1.27101511e-01 -4.60327059e-01\n 1.18113086e-01 -2.00346804e+00 -6.32991791e-01 -2.35213369e-01\n -4.12702084e-01 1.22134812e-01 -1.23491688e-02 -1.27832443e-02\n -8.41945875e-04 3.72150168e-02 2.11596899e-02 6.16230033e-02\n -1.09085497e-02 -1.92777719e-02 8.75691418e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOekLPg4Jzb0K16M8Sr/zPZMbDT4K16M8smQLPRxYAr4K16M8xI++PfXOsb0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZWfGPa5xZLw5F6Q9GkzJvU6NEr1nRRs+iS2pvQIbibwK16M8zxDvPBtZGb4bAQs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOekLPg4Jzb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEq/8z2TGw0+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACyZAs9HFgCvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAxI++PfXOsb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.13663186 -0.10011493 0.02 ]\n [ 0.1190172 0.1378005 0.02 ]\n [ 0.03403158 -0.12728924 0.02 ]\n [ 0.09304765 -0.08682052 0.02 ]]", "desired_goal": "[[ 0.0968769 -0.01394312 0.08012242]\n [-0.09828968 -0.03577929 0.15163194]\n [-0.08260638 -0.01673651 0.02 ]\n [ 0.02918282 -0.14975397 0.1357464 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3663186e-01\n -1.0011493e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1901720e-01\n 1.3780050e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.4031577e-02\n -1.2728924e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.3047649e-02\n -8.6820520e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cub3FrEcbSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucE6lk6LgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cub39M9KVZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cub24NRWLhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucM+05U97dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucaFeF+NMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucNLF4s3AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CucMPuogmrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuchdO6/ZedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cucud25hBrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuchzuOS4fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuchmh24d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc26XSjQBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudDvIGQjmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc3GCiAUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuc2GnO0LMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudLByCFsYdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CudLlNL128dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudX8KohpydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudLGFajesdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudKDD8+A3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cudfk/B3zMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudrqvFFUidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cude4mb9ZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CudiCpvP1MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cud8lPBSDRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueMBakhzOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueAPikwevdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueDLPt2LYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuecLQw9JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuerKbBoEkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuefOf29L6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CueiFq8DjjdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CueiyiudPMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cue7tvGZNPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cue8XLV4HHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufLK/dqL1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cue/l3Y+SsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufEGNaQmvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufeSq+8GtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cufrb212JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufeqH446wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufdvPkaMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufzSntOVPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuf/HX2/SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufyO2y9mIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CufxfiYLLIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugHJKaodddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugS9Kujh2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugGIGhVU/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugFl5nlGPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugbVx82JjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugnSi/O+qdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CugnsEidJ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CugakFGG21dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugagq/dqMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugv0jTrmhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cug8BNVR1pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuguuZ9d/sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cugt5Etuk2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhDbF85S4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhQEoOQQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhC0Zm7J5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhCT/ACXAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhXvoFFDwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuhj8+JP69dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhWpz90ihdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhWMl9jPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhsCyY5T7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh4enZTQ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuhrSO7xusdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuhq6O5rgwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiAM4tHx0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiMtTtLL7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh/jJ+2E1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuh/8cENe/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiWDpcHGCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiibCrLhadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiVSc0+C9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuiUslb/wRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuiqpj2BatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui3FwcYIjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuip8YZVGTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CuipkGA09AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui/TL4etCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujLmLk0aZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui+a+WWyDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cui+Ibn5i3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujTpM6BAfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cujf5xJd0JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujSoMa0hNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujSmtyPuHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujoBTn7pFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj0xdhRZVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cujnqk2xY8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CujnEona37dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj8TdcjZ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CukIayjYZmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj7KiO/+LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cuj6sEA5q/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (953 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-10T11:22:08.654319"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fde87419b7c349ebfec91c5844e4306ee7c1e0c3c615f00062ef29999a222d3c
3
+ size 3013