File size: 17,182 Bytes
176f060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c04346f31c0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7c04346e78c0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "num_timesteps": 100000,
    "_total_timesteps": 100000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1699956015514666505,
    "learning_rate": 0.001,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7q2BP54HJz8j5MQ9qkqIv2vPoT8y3cQ9ePl0v1e1Rj8l6cQ9PAjaPQnx4D4e5cQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFZKmPvgkkz/kQZw/ZnS6PqJ5yr09toi/MqhMP0fFxj/MB2Q/1GlEP1l+Yz8Yy4C9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAMs8y8ZznTv4wbK0DR5zC6U30Lv088Dr+ADYs/7q2BP54HJz8j5MQ9giWQPEeDm7s3v7C8ZBL3PPRNwLz1FDM93Jj4OyTvbryB+eO7OmeiPhqzTT8tr1O/YJkwP3+TzT/qEt48P5Rbv6pKiL9rz6E/Mt3EPYoFkzwOc6K7i3OwvJ/09DxBV7+89RQzPdyY+Dsl7268sX3kuz2aSj9rOEq+LkEjPuDrzz2gf6m/d5BHv82TXb94+XS/V7VGPyXpxD07H5A8s5Opu6yTs7zjPvs8rw3CvHcMMj2kpxg8Z09EvPHb5LvqmKc+mhZUvx9c7T9xHic/jgwBv5g9NT74VBu/PAjaPQnx4D4e5cQ981uRPEMzoLvgVKq8dtD6PGObwrxGFTM9GJ74O534brzT7827lGgOSwRLE4aUaBJ0lFKUdS4=",
        "achieved_goal": "[[ 1.0131204   0.65246     0.09613826]\n [-1.0647786   1.2641424   0.09612502]\n [-0.9569316   0.7762045   0.09614781]\n [ 0.10646102  0.43933895  0.09614013]]",
        "desired_goal": "[[ 0.32533327  1.1495657   1.2207608 ]\n [ 0.3641693  -0.09886481 -1.0680615 ]\n [ 0.79944146  1.5528954   0.890744  ]\n [ 0.7672398   0.88864666 -0.06288737]]",
        "observation": "[[-2.49877200e-02 -1.65018928e+00  2.67355633e+00 -6.74841052e-04\n  -5.44881046e-01 -5.55607736e-01  1.08634949e+00  1.01312041e+00\n   6.52459979e-01  9.61382613e-02  1.75960101e-02 -4.74587409e-03\n  -2.15755533e-02  3.01601365e-02 -2.34746709e-02  4.37211581e-02\n   7.58658163e-03 -1.45833828e-02 -6.95723342e-03]\n [ 3.17193806e-01  8.03514123e-01 -8.26891720e-01  6.89840317e-01\n   1.60606372e+00  2.71086283e-02 -8.57730806e-01 -1.06477857e+00\n   1.26414239e+00  9.61250216e-02  1.79469772e-02 -4.95756324e-03\n  -2.15394702e-02  2.99018007e-02 -2.33570356e-02  4.37211581e-02\n   7.58658163e-03 -1.45833837e-02 -6.97299140e-03]\n [ 7.91415989e-01 -1.97480842e-01  1.59428328e-01  1.01524115e-01\n  -1.32420731e+00 -7.79548109e-01 -8.65536511e-01 -9.56931591e-01\n   7.76204526e-01  9.61478129e-02  1.75930168e-02 -5.17507782e-03\n  -2.19210014e-02  3.06696352e-02 -2.36881655e-02  4.34689187e-02\n   9.31731239e-03 -1.19818216e-02 -6.98422687e-03]\n [ 3.27338517e-01 -8.28469872e-01  1.85437381e+00  6.52808249e-01\n  -5.04097819e-01  1.76992774e-01 -6.06765270e-01  1.06461018e-01\n   4.39338952e-01  9.61401314e-02  1.77440401e-02 -4.88892337e-03\n  -2.07924247e-02  3.06169800e-02 -2.37557348e-02  4.37214598e-02\n   7.58720562e-03 -1.45856412e-02 -6.28469279e-03]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtinTPbPJmL0K16M86y4BvZjWyL0K16M8jcIUvuv25z0K16M8+1iLvTaNhj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUbp0O9HwZL0K16M8naDTvSWpm70Lswk+xWFwPFWEFj7vXZ89tG0DPkIu/L3DBC0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtinTPbPJmL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOsuAb2Y1si9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACNwhS+6/bnPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA+1iLvTaNhj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
        "achieved_goal": "[[ 0.1031069  -0.07460346  0.02      ]\n [-0.03153889 -0.09806556  0.02      ]\n [-0.1452734   0.11326393  0.02      ]\n [-0.06804081  0.06569903  0.02      ]]",
        "desired_goal": "[[ 0.00373425 -0.05589372  0.02      ]\n [-0.10333369 -0.07600621  0.13447206]\n [ 0.01467175  0.14698918  0.07781588]\n [ 0.12834817 -0.1231351   0.16896348]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  1.0310690e-01\n  -7.4603461e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -3.1538885e-02\n  -9.8065555e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -1.4527340e-01\n   1.1326393e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -6.8040811e-02\n   6.5699026e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0B0WEdvKlpHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0VinBLwnZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Ze/VRUFTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0WuhpQDV6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ZjeN1hb4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ZEIOYplSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dHXXiBGydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0aV8G9pRGdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B0aaTOgQHzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dV7F85S4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0czszEaVEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0gEwZflZHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dTz8P4EfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0fuX2M85kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0fJQ66reZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0in7/GVAzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0f2AG0NSZdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B0f4nQY1pCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0iH7m+0w8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hkR3/xUedX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B0hm6RQrMDdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0B0ifi1iONpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0lAFr2xptdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0iRxCIDYAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0j/BeokzHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0k27nPmgbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0nUjeKsMidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0klEqlP8AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0mQoXsPatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0nH/o7muDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0pi508vEkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0m0fgaWHDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0oqFXaJyidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0pgqiGnGbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0seCL/CIldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0p2mGdqcmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0rjXd0q6OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0saF23azvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0uxme18b8dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B0u0ToMa0hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0sD8LronsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0t4hW5paidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0uwDnvDxcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0xLOoo/iYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ubQb+98JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0wKqHXVbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0xDJyQxN7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0zj8DSw4bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0wyptJnQIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0yeYzBRAKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0zVWZJCjUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B01yVpsXSCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0zA4m1IAfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B00uml67d0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B01lUT+NtJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B04Cu7pV0cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B01R7zCk44dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B03ExvegtfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0372USqVAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B06UihWYF8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B03jkU9IPLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B05W5BkZrIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B06OlYU34sdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B06RoQFs55dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B08pbGFSKndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B054RXfZVXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B07mM5wOvudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B08f19ORDDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0+6+M6zVudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B08MrH2h7FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0940UGmk4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0+yzv7WNFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1BNHAh0QsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0+bMr3CbddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1AHROUMXrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1BAqur6tUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B1BDShJyyVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1DdYEGJN1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1AtOLzf78dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1CgCwKSgXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Dd9Cu2ZzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1F2mqHXVcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1DFbaAWi2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1E+BmPHT7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1GJcSoOx0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1JAgzP8htdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1GS1UlzEKdX2UKGgGR8A4AAAAAAAAaAdLGWgIR0B1K2r5qM3qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1IsRujynUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Jx+lTFVDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1J7alDWsjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Od21UlzEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1MTm4iHIqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1NYSAYpDvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Nd8Ti83/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1SDLkjopydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1P4jv/io9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B1P+A5Jbt7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1RE5U96kZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1RX0/W1+idWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 5000,
    "n_steps": 5,
    "gamma": 0.95,
    "gae_lambda": 0.96,
    "ent_coef": 0.004,
    "vf_coef": 0.1,
    "max_grad_norm": 0.5,
    "normalize_advantage": false,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
        ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
        "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
        "dtype": "float32",
        "bounded_below": "[ True  True  True  True]",
        "bounded_above": "[ True  True  True  True]",
        "_shape": [
            4
        ],
        "low": "[-1. -1. -1. -1.]",
        "high": "[1. 1. 1. 1.]",
        "low_repr": "-1.0",
        "high_repr": "1.0",
        "_np_random": null
    },
    "n_envs": 4,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}