rl_course / config.json
Iggg0r's picture
first dummy solution
899b64c
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fde8d8d8af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fde8d8d8b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fde8d8d8c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fde8d8d8ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fde8d8d8d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fde8d8d8dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fde8d8d8e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fde8d8d8ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fde8d8d8f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fde8d8db040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fde8d8db0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fde8d8db160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fde8d8d4780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675873217006203000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN7lD3nEAk+3oK/PLCnvb6xUZM9hiONvQAAAAAAAAAArg8dvyeASb7iCIG7jMX4ucbeTD6btp06AACAPwAAgD8zTFM97AmGuXbCybYRv02xwqRJustG7DUAAIA/AACAP4ABHz5E2YY/s87OPhKQJr93yoo+nXlHPgAAAAAAAAAAM16BvXpXsj9K7QC/9VhYvvdgSTwvHpq9AAAAAAAAAABmPuu7SIOpuoNiXjYiStcuxtWxuqzYgrUAAIA/AACAP2b1vzzsUOG77p2ePKX2vzzy/7s8rtgCOgAAgD8AAIA/M9mvPNfzZrkIXHc5EqGwNF2hqztvJpG4AACAPwAAgD8AR9O89ugXugmgkDujQ4A4cnptO4d8wrgAAIA/AACAP5p4uT2dIKw/7rYlPxR6tb47CS89whGTPgAAAAAAAAAAZhxSPD31pz/s3QQ+x2cMv5BFSTxWxW09AAAAAAAAAADz8N494dCVuiJfl7jr54azMz9TukZ5rzcAAAAAAACAP82+Z71qdAs+MeC4PrsQnL4Ylno+GH3CPQAAAAAAAAAAgLSRPbin+LveHB28XyCCPDR+RT2ObVu9AACAPwAAgD/aIry98buWPvOswT565bW+TOMoPc2FhT0AAAAAAAAAAGYmTDz2xLo/U/vLPaWRmzvTR0k8llsitwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoFIlyp5RcECUhpRSlIwBbJRL6IwBdJRHQI5hkpw0fo11fZQoaAZoCWgPQwgQO1Po/J5yQJSGlFKUaBVL7GgWR0COYf4Fiay9dX2UKGgGaAloD0MIic4yixBdcUCUhpRSlGgVTQMBaBZHQI5iN7laKUF1fZQoaAZoCWgPQwj4wfnUsWpAQJSGlFKUaBVLrmgWR0COYqD4gzP9dX2UKGgGaAloD0MII72o3S8HbUCUhpRSlGgVS99oFkdAjmLA6+36RHV9lChoBmgJaA9DCPD5YYRwWnBAlIaUUpRoFUvvaBZHQI5jhMWXTmZ1fZQoaAZoCWgPQwglWYejK8pvQJSGlFKUaBVL7GgWR0COY/aL4vexdX2UKGgGaAloD0MI8+fbgiW2bkCUhpRSlGgVS9toFkdAjmQhAnlXBHV9lChoBmgJaA9DCGOcvwlFgnFAlIaUUpRoFUv5aBZHQI5lQ2wV0tB1fZQoaAZoCWgPQwikpfJ2RBpzQJSGlFKUaBVLy2gWR0COZW7zTWoWdX2UKGgGaAloD0MIILQevgxKcUCUhpRSlGgVTQYBaBZHQI5lqvicXnB1fZQoaAZoCWgPQwjBOSNKe29IQJSGlFKUaBVLpWgWR0COZn2VVxS6dX2UKGgGaAloD0MI+1sC8I8pcECUhpRSlGgVS+5oFkdAjmaTT4L1EnV9lChoBmgJaA9DCB6jPPOyx3NAlIaUUpRoFUvWaBZHQI5mtXJYDDF1fZQoaAZoCWgPQwgcz2dAffZyQJSGlFKUaBVL52gWR0COZ0AWBSUDdX2UKGgGaAloD0MI5Uf8irVzcECUhpRSlGgVS+1oFkdAjmfncL0BfnV9lChoBmgJaA9DCNFZZhGKW3JAlIaUUpRoFUvTaBZHQI5oPZdv8651fZQoaAZoCWgPQwgjhh3GJJdtQJSGlFKUaBVLyWgWR0COaLE9dNWVdX2UKGgGaAloD0MIhZfg1EcpcECUhpRSlGgVS/NoFkdAjmloESuhbnV9lChoBmgJaA9DCDRMbanDBXNAlIaUUpRoFUvfaBZHQI5qqqjrRjV1fZQoaAZoCWgPQwj7yRgfplNyQJSGlFKUaBVNIwFoFkdAjmtwDV6NVHV9lChoBmgJaA9DCAdCsoCJpHNAlIaUUpRoFUvzaBZHQI5rjS7Xg+B1fZQoaAZoCWgPQwibOo+K/y1KQJSGlFKUaBVLpWgWR0COa59ETg2qdX2UKGgGaAloD0MIWkV/aKYgckCUhpRSlGgVTQ4BaBZHQI5rvhCMPz51fZQoaAZoCWgPQwhgdHlzOFZuQJSGlFKUaBVL3GgWR0COa/qdH2AYdX2UKGgGaAloD0MI5Q0w8x0yTECUhpRSlGgVS7doFkdAjmxDFQ2uPnV9lChoBmgJaA9DCC6sG+8Oa3JAlIaUUpRoFUv2aBZHQI5tFtqHoHN1fZQoaAZoCWgPQwhvL2mM1k1yQJSGlFKUaBVL82gWR0CObdZf2K2sdX2UKGgGaAloD0MIpYKKqh+XcECUhpRSlGgVS+loFkdAjm5cAq/dqXV9lChoBmgJaA9DCHr83qZ/+HJAlIaUUpRoFUvgaBZHQI5vLej2zv91fZQoaAZoCWgPQwg7GLFPAHFuQJSGlFKUaBVNCQFoFkdAjnBAYxcmjXV9lChoBmgJaA9DCCCySBPvpk1AlIaUUpRoFUuTaBZHQI5waPIXCTF1fZQoaAZoCWgPQwjRrdf0IKNtQJSGlFKUaBVNCQFoFkdAjnE64Ds+mnV9lChoBmgJaA9DCPuxSX5EaHJAlIaUUpRoFU16AWgWR0COcU4XoC+2dX2UKGgGaAloD0MIAI3SpX8BNkCUhpRSlGgVS3RoFkdAjnHWmYSg5HV9lChoBmgJaA9DCD0MrU5Omm5AlIaUUpRoFU0HAWgWR0COcffXPJJYdX2UKGgGaAloD0MIHXbfMTzockCUhpRSlGgVS+RoFkdAjnIevIOpbXV9lChoBmgJaA9DCN2YnrBEF3BAlIaUUpRoFUu8aBZHQI5ycyBTXJ51fZQoaAZoCWgPQwjeBN80/U9xQJSGlFKUaBVL7WgWR0COc0zQeFL4dX2UKGgGaAloD0MIN/5EZYMucUCUhpRSlGgVTQkBaBZHQI50EtwrDqJ1fZQoaAZoCWgPQwinzw647odwQJSGlFKUaBVNkwNoFkdAjnRmipNsWXV9lChoBmgJaA9DCF+zXDb6+nJAlIaUUpRoFUv1aBZHQI52e0Z3s5Z1fZQoaAZoCWgPQwi1FmahndBuQJSGlFKUaBVL8GgWR0COdzJcPe54dX2UKGgGaAloD0MI9dbAVomgcECUhpRSlGgVS8VoFkdAjne588cMmXV9lChoBmgJaA9DCO5Cc53Gy3BAlIaUUpRoFUvOaBZHQI54KJj2Bat1fZQoaAZoCWgPQwiskPKTauxtQJSGlFKUaBVNDgFoFkdAjnm1FH8TBnV9lChoBmgJaA9DCHvYCwWs/XFAlIaUUpRoFUvgaBZHQI550IgNgBt1fZQoaAZoCWgPQwhYjLrWHrRxQJSGlFKUaBVNNgFoFkdAjnsexfOUuHV9lChoBmgJaA9DCGKiQQpernBAlIaUUpRoFUv4aBZHQI57NKmKqGV1fZQoaAZoCWgPQwg1XU90nVByQJSGlFKUaBVNEAFoFkdAjnuFY+0PYnV9lChoBmgJaA9DCO7O2m2XanFAlIaUUpRoFUvVaBZHQI57teQdS2p1fZQoaAZoCWgPQwjlmZfDbuFyQJSGlFKUaBVNHwFoFkdAjnvrt/nW8XV9lChoBmgJaA9DCChFK/cCpW5AlIaUUpRoFUv+aBZHQI58UiKR+0B1fZQoaAZoCWgPQwh+i06WmitzQJSGlFKUaBVL7GgWR0COfMWu5jH5dX2UKGgGaAloD0MIjSjtDX6DcUCUhpRSlGgVTQwCaBZHQI5/NZFG5MF1fZQoaAZoCWgPQwh56Ltb2YNyQJSGlFKUaBVL/2gWR0COgJ9LHuJDdX2UKGgGaAloD0MIbJc2HJa2bUCUhpRSlGgVTSMBaBZHQI6BT4xk/bF1fZQoaAZoCWgPQwjAJQD/FNtxQJSGlFKUaBVL/WgWR0COgZg6U7jldX2UKGgGaAloD0MIPNwODYtucECUhpRSlGgVS8poFkdAjoKL/CIk7nV9lChoBmgJaA9DCEMc6+I2929AlIaUUpRoFUv5aBZHQI6DG8wpON51fZQoaAZoCWgPQwh8RbdeExlzQJSGlFKUaBVNAQFoFkdAjoNRx1gYxnV9lChoBmgJaA9DCB1VTRB1yXJAlIaUUpRoFUvbaBZHQI6DT48EFGJ1fZQoaAZoCWgPQwjPwMjLmrlxQJSGlFKUaBVL1mgWR0COg5ylvZRLdX2UKGgGaAloD0MIGt1B7ExUbUCUhpRSlGgVS/loFkdAjoSdCVrylXV9lChoBmgJaA9DCLzplh1i7XFAlIaUUpRoFUvvaBZHQI6Fl0cOskp1fZQoaAZoCWgPQwiZEkn0stJxQJSGlFKUaBVNFwFoFkdAjoYP8Q7LdXV9lChoBmgJaA9DCG6hKxGoOW1AlIaUUpRoFU0uAWgWR0COh1n9vS+hdX2UKGgGaAloD0MIibK3lPNdc0CUhpRSlGgVS8NoFkdAjohw2/BWP3V9lChoBmgJaA9DCOAT61S5KXJAlIaUUpRoFUv3aBZHQI6IbneSB9V1fZQoaAZoCWgPQwgxJCcTN6RwQJSGlFKUaBVL0WgWR0COiTLdvbXZdX2UKGgGaAloD0MILq2GxL3kb0CUhpRSlGgVS9xoFkdAjotnPE87p3V9lChoBmgJaA9DCAU25+BZtXFAlIaUUpRoFUvwaBZHQI6MUYO2AoZ1fZQoaAZoCWgPQwhvumWHeAlxQJSGlFKUaBVLxmgWR0COjhq9oN/fdX2UKGgGaAloD0MIsKnzqPiVVMCUhpRSlGgVS45oFkdAjo6O1fE4vXV9lChoBmgJaA9DCOYHrvLExHBAlIaUUpRoFU0XAWgWR0COjpomG/N8dX2UKGgGaAloD0MIjWMkewTlcECUhpRSlGgVTU8BaBZHQI6P7SPU8V51fZQoaAZoCWgPQwgf9kIB23JRQJSGlFKUaBVN6ANoFkdAjpAgmzByj3V9lChoBmgJaA9DCFH4bB0cOlVAlIaUUpRoFU3oA2gWR0COkLQmeDnOdX2UKGgGaAloD0MIIy4AjZK4cUCUhpRSlGgVS8poFkdAjpEnp8neBXV9lChoBmgJaA9DCJKyRdJuKHBAlIaUUpRoFU1zAWgWR0COkd8JD3M7dX2UKGgGaAloD0MIXJAty5eBcUCUhpRSlGgVS91oFkdAjpKofSx7iXV9lChoBmgJaA9DCCGQSxy5xHFAlIaUUpRoFU1SAWgWR0COk1OjZcs2dX2UKGgGaAloD0MI+7FJfgSIc0CUhpRSlGgVTYEBaBZHQI6T/336AOJ1fZQoaAZoCWgPQwi2EyUh0cxxQJSGlFKUaBVLymgWR0COlKvsZ5zHdX2UKGgGaAloD0MIPzifOtY1ckCUhpRSlGgVS+NoFkdAjpTVkDp1R3V9lChoBmgJaA9DCDdtxmmI9nJAlIaUUpRoFU1dAWgWR0COlW7GvOhTdX2UKGgGaAloD0MInKiluRUeOUCUhpRSlGgVS4VoFkdAjpXoDoyKvXV9lChoBmgJaA9DCOEoeXXOD3RAlIaUUpRoFUvWaBZHQI6WlF6Rhc91fZQoaAZoCWgPQwho6J/gYthyQJSGlFKUaBVL8WgWR0COlyh3aBZqdX2UKGgGaAloD0MIGD4ipkRsRECUhpRSlGgVS6doFkdAjphWXb/OuHV9lChoBmgJaA9DCB+/t+lPyHJAlIaUUpRoFUvzaBZHQI6YqNZNfw91fZQoaAZoCWgPQwhOJ9nqMlNwQJSGlFKUaBVNFwFoFkdAjpjJxWDHwXV9lChoBmgJaA9DCA39E1ysSGlAlIaUUpRoFU2CA2gWR0COmZWfbsWwdX2UKGgGaAloD0MIJZUp5iAgckCUhpRSlGgVS/BoFkdAjpoUcn3L3nV9lChoBmgJaA9DCHYXKCmwaXJAlIaUUpRoFU0kAWgWR0COmiGEf1YhdX2UKGgGaAloD0MIbmk1JK7GcUCUhpRSlGgVTXYBaBZHQI6dpX8wYch1fZQoaAZoCWgPQwiwWS4bHThvQJSGlFKUaBVLz2gWR0COnmG0u14PdX2UKGgGaAloD0MI+DO8WQOEbkCUhpRSlGgVS/ZoFkdAjp5hLf1pTXV9lChoBmgJaA9DCJ6ymq5nu3FAlIaUUpRoFU0HAWgWR0COnnDCP6sRdX2UKGgGaAloD0MI3ZVdMPjZckCUhpRSlGgVTUUBaBZHQI6eiHj6vaF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}