File size: 7,900 Bytes
f574b15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ac7f2
 
 
 
 
f574b15
58ac7f2
 
f574b15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ac7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
f574b15
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5815
- Answer: {'precision': 0.8604118993135011, 'recall': 0.9204406364749081, 'f1': 0.8894145476049675, 'number': 817}
- Header: {'precision': 0.6330275229357798, 'recall': 0.5798319327731093, 'f1': 0.6052631578947367, 'number': 119}
- Question: {'precision': 0.9101851851851852, 'recall': 0.9127205199628597, 'f1': 0.9114510894761243, 'number': 1077}
- Overall Precision: 0.8745
- Overall Recall: 0.8962
- Overall F1: 0.8852
- Overall Accuracy: 0.8209

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                   | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4131        | 10.53  | 200  | 0.9920          | {'precision': 0.7944444444444444, 'recall': 0.8751529987760098, 'f1': 0.8328479906814211, 'number': 817} | {'precision': 0.5267857142857143, 'recall': 0.4957983193277311, 'f1': 0.5108225108225107, 'number': 119} | {'precision': 0.8690265486725663, 'recall': 0.9117920148560817, 'f1': 0.8898957861350248, 'number': 1077} | 0.8198            | 0.8723         | 0.8452     | 0.7912           |
| 0.0453        | 21.05  | 400  | 1.3055          | {'precision': 0.8215077605321508, 'recall': 0.9069767441860465, 'f1': 0.8621291448516578, 'number': 817} | {'precision': 0.5961538461538461, 'recall': 0.5210084033613446, 'f1': 0.5560538116591929, 'number': 119} | {'precision': 0.8818755635707844, 'recall': 0.9080779944289693, 'f1': 0.8947849954254347, 'number': 1077} | 0.8421            | 0.8847         | 0.8629     | 0.7971           |
| 0.0129        | 31.58  | 600  | 1.6559          | {'precision': 0.8261826182618262, 'recall': 0.9192166462668299, 'f1': 0.8702201622247971, 'number': 817} | {'precision': 0.4957983193277311, 'recall': 0.4957983193277311, 'f1': 0.4957983193277311, 'number': 119} | {'precision': 0.9050814956855225, 'recall': 0.8765088207985144, 'f1': 0.8905660377358492, 'number': 1077} | 0.8469            | 0.8713         | 0.8590     | 0.7952           |
| 0.0083        | 42.11  | 800  | 1.6136          | {'precision': 0.8760529482551144, 'recall': 0.8910648714810282, 'f1': 0.883495145631068, 'number': 817}  | {'precision': 0.6145833333333334, 'recall': 0.4957983193277311, 'f1': 0.5488372093023256, 'number': 119} | {'precision': 0.8963922294172063, 'recall': 0.8997214484679665, 'f1': 0.8980537534754401, 'number': 1077} | 0.8745            | 0.8723         | 0.8734     | 0.8060           |
| 0.0058        | 52.63  | 1000 | 1.6826          | {'precision': 0.8553386911595867, 'recall': 0.9118727050183598, 'f1': 0.8827014218009479, 'number': 817} | {'precision': 0.6355140186915887, 'recall': 0.5714285714285714, 'f1': 0.6017699115044248, 'number': 119} | {'precision': 0.8902991840435177, 'recall': 0.9117920148560817, 'f1': 0.9009174311926607, 'number': 1077} | 0.8626            | 0.8917         | 0.8769     | 0.7928           |
| 0.0027        | 63.16  | 1200 | 1.5511          | {'precision': 0.8640661938534279, 'recall': 0.8947368421052632, 'f1': 0.8791340950090198, 'number': 817} | {'precision': 0.576, 'recall': 0.6050420168067226, 'f1': 0.5901639344262294, 'number': 119}              | {'precision': 0.8985374771480804, 'recall': 0.9127205199628597, 'f1': 0.9055734684477199, 'number': 1077} | 0.8649            | 0.8872         | 0.8759     | 0.8110           |
| 0.0014        | 73.68  | 1400 | 1.5130          | {'precision': 0.8801452784503632, 'recall': 0.8898408812729498, 'f1': 0.8849665246500303, 'number': 817} | {'precision': 0.6213592233009708, 'recall': 0.5378151260504201, 'f1': 0.5765765765765765, 'number': 119} | {'precision': 0.8748906386701663, 'recall': 0.9285051067780873, 'f1': 0.900900900900901, 'number': 1077}  | 0.8644            | 0.8897         | 0.8769     | 0.8092           |
| 0.001         | 84.21  | 1600 | 1.5433          | {'precision': 0.8373893805309734, 'recall': 0.9265605875152999, 'f1': 0.8797210923881464, 'number': 817} | {'precision': 0.6033057851239669, 'recall': 0.6134453781512605, 'f1': 0.6083333333333334, 'number': 119} | {'precision': 0.9138257575757576, 'recall': 0.8960074280408542, 'f1': 0.9048288795124239, 'number': 1077} | 0.8626            | 0.8917         | 0.8769     | 0.8139           |
| 0.0006        | 94.74  | 1800 | 1.5585          | {'precision': 0.8500576701268743, 'recall': 0.9020807833537332, 'f1': 0.8752969121140143, 'number': 817} | {'precision': 0.6371681415929203, 'recall': 0.6050420168067226, 'f1': 0.6206896551724138, 'number': 119} | {'precision': 0.8933454876937101, 'recall': 0.9099350046425255, 'f1': 0.9015639374425023, 'number': 1077} | 0.8613            | 0.8887         | 0.8748     | 0.8197           |
| 0.0003        | 105.26 | 2000 | 1.5719          | {'precision': 0.8505096262740657, 'recall': 0.9192166462668299, 'f1': 0.8835294117647059, 'number': 817} | {'precision': 0.6605504587155964, 'recall': 0.6050420168067226, 'f1': 0.6315789473684209, 'number': 119} | {'precision': 0.9113805970149254, 'recall': 0.9071494893221913, 'f1': 0.9092601209865054, 'number': 1077} | 0.8721            | 0.8942         | 0.8830     | 0.8246           |
| 0.0004        | 115.79 | 2200 | 1.5578          | {'precision': 0.8554913294797688, 'recall': 0.9057527539779682, 'f1': 0.8799048751486326, 'number': 817} | {'precision': 0.6283185840707964, 'recall': 0.5966386554621849, 'f1': 0.6120689655172413, 'number': 119} | {'precision': 0.9059907834101383, 'recall': 0.9127205199628597, 'f1': 0.9093432007400555, 'number': 1077} | 0.8696            | 0.8912         | 0.8803     | 0.8194           |
| 0.0003        | 126.32 | 2400 | 1.5815          | {'precision': 0.8604118993135011, 'recall': 0.9204406364749081, 'f1': 0.8894145476049675, 'number': 817} | {'precision': 0.6330275229357798, 'recall': 0.5798319327731093, 'f1': 0.6052631578947367, 'number': 119} | {'precision': 0.9101851851851852, 'recall': 0.9127205199628597, 'f1': 0.9114510894761243, 'number': 1077} | 0.8745            | 0.8962         | 0.8852     | 0.8209           |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0