adding vocabulary files for alberto tokenizer
Browse files- tokenizer.py +238 -0
- vocab.txt +0 -0
tokenizer.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team,
|
3 |
+
# and Marco Polignano.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""Tokenization classes for Italian AlBERTo models."""
|
18 |
+
import collections
|
19 |
+
import logging
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
import logger
|
23 |
+
|
24 |
+
try:
|
25 |
+
from ekphrasis.classes.preprocessor import TextPreProcessor
|
26 |
+
from ekphrasis.classes.tokenizer import SocialTokenizer
|
27 |
+
from ekphrasis.dicts.emoticons import emoticons
|
28 |
+
except ImportError:
|
29 |
+
#logger.warning(
|
30 |
+
# "You need to install ekphrasis to use AlBERToTokenizer"
|
31 |
+
# "pip install ekphrasis"
|
32 |
+
#)
|
33 |
+
from pip._internal import main as pip
|
34 |
+
pip(['install', '--user', 'ekphrasis'])
|
35 |
+
from ekphrasis.classes.preprocessor import TextPreProcessor
|
36 |
+
from ekphrasis.classes.tokenizer import SocialTokenizer
|
37 |
+
from ekphrasis.dicts.emoticons import emoticons
|
38 |
+
|
39 |
+
try:
|
40 |
+
import numpy as np
|
41 |
+
except ImportError:
|
42 |
+
logger.warning(
|
43 |
+
"You need to install numpy to use AlBERToTokenizer"
|
44 |
+
"pip install numpy"
|
45 |
+
)
|
46 |
+
from pip._internal import main as pip
|
47 |
+
pip(['install', '--user', 'pandas'])
|
48 |
+
import pandas as pd
|
49 |
+
|
50 |
+
try:
|
51 |
+
from transformers import BertTokenizer, WordpieceTokenizer
|
52 |
+
from transformers.tokenization_bert import load_vocab
|
53 |
+
except ImportError:
|
54 |
+
logger.warning(
|
55 |
+
"You need to install pytorch-transformers to use AlBERToTokenizer"
|
56 |
+
"pip install pytorch-transformers"
|
57 |
+
)
|
58 |
+
from pip._internal import main as pip
|
59 |
+
pip(['install', '--user', 'pytorch-transformers'])
|
60 |
+
from transformers import BertTokenizer, WordpieceTokenizer
|
61 |
+
from transformers.tokenization_bert import load_vocab
|
62 |
+
|
63 |
+
text_processor = TextPreProcessor(
|
64 |
+
# terms that will be normalized
|
65 |
+
normalize=['url', 'email', 'user', 'percent', 'money', 'phone', 'time', 'date', 'number'],
|
66 |
+
# terms that will be annotated
|
67 |
+
annotate={"hashtag"},
|
68 |
+
fix_html=True, # fix HTML tokens
|
69 |
+
|
70 |
+
unpack_hashtags=True, # perform word segmentation on hashtags
|
71 |
+
|
72 |
+
# select a tokenizer. You can use SocialTokenizer, or pass your own
|
73 |
+
# the tokenizer, should take as input a string and return a list of tokens
|
74 |
+
tokenizer=SocialTokenizer(lowercase=True).tokenize,
|
75 |
+
dicts=[emoticons]
|
76 |
+
)
|
77 |
+
|
78 |
+
class AlBERTo_Preprocessing(object):
|
79 |
+
def __init__(self, do_lower_case=True, **kwargs):
|
80 |
+
self.do_lower_case = do_lower_case
|
81 |
+
|
82 |
+
def preprocess(self, text):
|
83 |
+
if self.do_lower_case:
|
84 |
+
text = text.lower()
|
85 |
+
text = str(" ".join(text_processor.pre_process_doc(text)))
|
86 |
+
text = re.sub(r'[^a-zA-ZÀ-ú</>!?♥♡\s\U00010000-\U0010ffff]', ' ', text)
|
87 |
+
text = re.sub(r'\s+', ' ', text)
|
88 |
+
text = re.sub(r'(\w)\1{2,}', r'\1\1', text)
|
89 |
+
text = re.sub(r'^\s', '', text)
|
90 |
+
text = re.sub(r'\s$', '', text)
|
91 |
+
return text
|
92 |
+
|
93 |
+
class AlBERToTokenizer(BertTokenizer):
|
94 |
+
|
95 |
+
def __init__(self, vocab_file, do_lower_case=True,
|
96 |
+
do_basic_tokenize=True, do_char_tokenize=False, do_wordpiece_tokenize=False, do_preprocessing = True, unk_token='[UNK]',
|
97 |
+
sep_token='[SEP]',
|
98 |
+
pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', **kwargs):
|
99 |
+
super(BertTokenizer, self).__init__(
|
100 |
+
unk_token=unk_token, sep_token=sep_token, pad_token=pad_token,
|
101 |
+
cls_token=cls_token, mask_token=mask_token, **kwargs)
|
102 |
+
|
103 |
+
self.do_wordpiece_tokenize = do_wordpiece_tokenize
|
104 |
+
self.do_lower_case = do_lower_case
|
105 |
+
self.vocab_file = vocab_file
|
106 |
+
self.do_basic_tokenize = do_basic_tokenize
|
107 |
+
self.do_char_tokenize = do_char_tokenize
|
108 |
+
self.unk_token = unk_token
|
109 |
+
self.do_preprocessing = do_preprocessing
|
110 |
+
|
111 |
+
if not os.path.isfile(vocab_file):
|
112 |
+
raise ValueError(
|
113 |
+
"Can't find a vocabulary file at path '{}'.".format(vocab_file))
|
114 |
+
|
115 |
+
self.vocab = load_vocab(vocab_file)
|
116 |
+
self.ids_to_tokens = collections.OrderedDict(
|
117 |
+
[(ids, tok) for tok, ids in self.vocab.items()])
|
118 |
+
|
119 |
+
if do_wordpiece_tokenize:
|
120 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab,
|
121 |
+
unk_token=self.unk_token)
|
122 |
+
|
123 |
+
self.base_bert_tok = BertTokenizer(vocab_file=self.vocab_file, do_lower_case=do_lower_case,
|
124 |
+
unk_token=unk_token, sep_token=sep_token, pad_token=pad_token,
|
125 |
+
cls_token=cls_token, mask_token=mask_token, **kwargs)
|
126 |
+
|
127 |
+
def _convert_token_to_id(self, token):
|
128 |
+
"""Converts a token (str/unicode) to an id using the vocab."""
|
129 |
+
# if token[:2] == '##':
|
130 |
+
# token = token[2:]
|
131 |
+
|
132 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
133 |
+
|
134 |
+
def convert_token_to_id(self, token):
|
135 |
+
return self._convert_token_to_id(token)
|
136 |
+
|
137 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
138 |
+
|
139 |
+
def _convert_id_to_token(self, id):
|
140 |
+
# if token[:2] == '##':
|
141 |
+
# token = token[2:]
|
142 |
+
|
143 |
+
return list(self.vocab.keys())[int(id)]
|
144 |
+
def convert_id_to_token(self, id):
|
145 |
+
return self._convert_id_to_token(id)
|
146 |
+
|
147 |
+
def _convert_tokens_to_string(self,tokens):
|
148 |
+
"""Converts a sequence of tokens (string) to a single string."""
|
149 |
+
out_string = ' '.join(tokens).replace('##', '').strip()
|
150 |
+
return out_string
|
151 |
+
|
152 |
+
def convert_tokens_to_string(self,tokens):
|
153 |
+
return self._convert_tokens_to_string(tokens)
|
154 |
+
|
155 |
+
def _tokenize(self, text, never_split=None, **kwargs):
|
156 |
+
if self.do_preprocessing:
|
157 |
+
if self.do_lower_case:
|
158 |
+
text = text.lower()
|
159 |
+
text = str(" ".join(text_processor.pre_process_doc(text)))
|
160 |
+
text = re.sub(r'[^a-zA-ZÀ-ú</>!?♥♡\s\U00010000-\U0010ffff]', ' ', text)
|
161 |
+
text = re.sub(r'\s+', ' ', text)
|
162 |
+
text = re.sub(r'(\w)\1{2,}', r'\1\1', text)
|
163 |
+
text = re.sub(r'^\s', '', text)
|
164 |
+
text = re.sub(r'\s$', '', text)
|
165 |
+
# print(s)
|
166 |
+
|
167 |
+
split_tokens = [text]
|
168 |
+
if self.do_wordpiece_tokenize:
|
169 |
+
wordpiece_tokenizer = WordpieceTokenizer(self.vocab,self.unk_token)
|
170 |
+
split_tokens = wordpiece_tokenizer.tokenize(text)
|
171 |
+
|
172 |
+
elif self.do_char_tokenize:
|
173 |
+
tokenizer = CharacterTokenizer(self.vocab, self.unk_token)
|
174 |
+
split_tokens = tokenizer.tokenize(text)
|
175 |
+
|
176 |
+
elif self.do_basic_tokenize:
|
177 |
+
"""Tokenizes a piece of text."""
|
178 |
+
split_tokens = self.base_bert_tok.tokenize(text)
|
179 |
+
|
180 |
+
return split_tokens
|
181 |
+
|
182 |
+
def tokenize(self, text, never_split=None, **kwargs):
|
183 |
+
return self._tokenize(text, never_split)
|
184 |
+
|
185 |
+
|
186 |
+
class CharacterTokenizer(object):
|
187 |
+
"""Runs Character tokenziation."""
|
188 |
+
|
189 |
+
def __init__(self, vocab, unk_token,
|
190 |
+
max_input_chars_per_word=100, with_markers=True):
|
191 |
+
"""Constructs a CharacterTokenizer.
|
192 |
+
Args:
|
193 |
+
vocab: Vocabulary object.
|
194 |
+
unk_token: A special symbol for out-of-vocabulary token.
|
195 |
+
with_markers: If True, "#" is appended to each output character except the
|
196 |
+
first one.
|
197 |
+
"""
|
198 |
+
self.vocab = vocab
|
199 |
+
self.unk_token = unk_token
|
200 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
201 |
+
self.with_markers = with_markers
|
202 |
+
|
203 |
+
def tokenize(self, text):
|
204 |
+
"""Tokenizes a piece of text into characters.
|
205 |
+
|
206 |
+
For example:
|
207 |
+
input = "apple"
|
208 |
+
output = ["a", "##p", "##p", "##l", "##e"] (if self.with_markers is True)
|
209 |
+
output = ["a", "p", "p", "l", "e"] (if self.with_markers is False)
|
210 |
+
Args:
|
211 |
+
text: A single token or whitespace separated tokens.
|
212 |
+
This should have already been passed through `BasicTokenizer`.
|
213 |
+
Returns:
|
214 |
+
A list of characters.
|
215 |
+
"""
|
216 |
+
|
217 |
+
output_tokens = []
|
218 |
+
for i, char in enumerate(text):
|
219 |
+
if char not in self.vocab:
|
220 |
+
output_tokens.append(self.unk_token)
|
221 |
+
continue
|
222 |
+
|
223 |
+
if self.with_markers and i != 0:
|
224 |
+
output_tokens.append('##' + char)
|
225 |
+
else:
|
226 |
+
output_tokens.append(char)
|
227 |
+
|
228 |
+
return output_tokens
|
229 |
+
|
230 |
+
if __name__== "__main__":
|
231 |
+
a = AlBERTo_Preprocessing(do_lower_case=True)
|
232 |
+
s = "#IlGOverno presenta le linee guida sulla scuola #labuonascuola - http://t.co/SYS1T9QmQN"
|
233 |
+
b = a.preprocess(s)
|
234 |
+
print(b)
|
235 |
+
|
236 |
+
c =AlBERToTokenizer(do_lower_case=True,vocab_file="vocab.txt", do_preprocessing=True)
|
237 |
+
d = c.tokenize(s)
|
238 |
+
print(d)
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|