File size: 1,805 Bytes
d4788f6 4132482 d4788f6 4132482 d4788f6 4132482 d4788f6 4132482 d4788f6 54ed0e9 d4788f6 54ed0e9 d4788f6 54ed0e9 d4788f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
language: es
tags:
- biomedical
- clinical
- spanish
- xlm-roberta-large
license: mit
datasets:
- "ehealth_kd"
metrics:
- f1
model-index:
- name: IIC/xlm-roberta-large-ehealth_kd
results:
- task:
type: token-classification
dataset:
name: eHealth-KD
type: ehealth_kd
split: test
metrics:
- name: f1
type: f1
value: 0.871
pipeline_tag: token-classification
---
# xlm-roberta-large-ehealth_kd
This model is a finetuned version of xlm-roberta-large for the eHealth-KD dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.871
Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information.
## Parameters used
| parameter | Value |
|-------------------------|:-----:|
| batch size | 16 |
| learning rate | 2e-05 |
| classifier dropout | 0.2 |
| warmup ratio | 0 |
| warmup steps | 0 |
| weight decay | 0 |
| optimizer | AdamW |
| epochs | 10 |
| early stopping patience | 3 |
## BibTeX entry and citation info
```bibtext
@article{10.1093/jamia/ocae054,
author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma},
title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks},
journal = {Journal of the American Medical Informatics Association},
volume = {31},
number = {9},
pages = {2137-2146},
year = {2024},
month = {03},
issn = {1527-974X},
doi = {10.1093/jamia/ocae054},
url = {https://doi.org/10.1093/jamia/ocae054},
}
```
|