File size: 1,934 Bytes
38704d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d3fcd
38704d1
d1d3fcd
38704d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d3fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
38704d1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language: es
tags:
- biomedical
- clinical
- spanish
- roberta-large-bne
license: apache-2.0
datasets:
- "lcampillos/ctebmsp"
metrics:
- f1

model-index:
- name: IIC/roberta-large-bne-ctebmsp
  results:
  - task:
      type: token-classification
    dataset:
      name: CT-EBM-SP (Clinical Trials for Evidence-based Medicine in Spanish)
      type: lcampillos/ctebmsp
      split: test
    metrics:
      - name: f1
        type: f1
        value: 0.877
pipeline_tag: token-classification

---

# roberta-large-bne-ctebmsp

This model is a finetuned version of roberta-large-bne for the CT-EBM-SP (Clinical Trials for Evidence-based Medicine in Spanish) dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.877

Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information.

## Parameters used

| parameter               | Value |
|-------------------------|:-----:|
| batch size              |  64   |
| learning rate           | 2e-05  |
| classifier dropout      |  0.1   |
| warmup ratio            |   0   |
| warmup steps            |   0   |
| weight decay            |   0   |
| optimizer               | AdamW |
| epochs                  |   10  |
| early stopping patience |   3   |


## BibTeX entry and citation info

```bibtext
@article{10.1093/jamia/ocae054,
    author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma},
    title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks},
    journal = {Journal of the American Medical Informatics Association},
    volume = {31},
    number = {9},
    pages = {2137-2146},
    year = {2024},
    month = {03},
    issn = {1527-974X},
    doi = {10.1093/jamia/ocae054},
    url = {https://doi.org/10.1093/jamia/ocae054},
}
```