File size: 2,535 Bytes
fce645c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d40982
fce645c
4d40982
fce645c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d40982
 
 
 
 
 
 
 
 
 
 
 
 
 
fce645c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language: es
tags:
- biomedical
- clinical
- spanish
- XLM_R_Galen
license: mit
datasets:
- "PlanTL-GOB-ES/pharmaconer"
metrics:
- f1

model-index:
- name: IIC/XLM_R_Galen-pharmaconer
  results:
  - task:
      type: token-classification
    dataset:
      name: pharmaconer
      type: PlanTL-GOB-ES/pharmaconer
      split: test
    metrics:
      - name: f1
        type: f1
        value: 0.915
pipeline_tag: token-classification
widget:
- text: "Se realizó estudio analítico destacando incremento de niveles de PTH y vitamina D (103,7 pg/ml y 272 ng/ml, respectivamente), atribuidos al exceso de suplementación de vitamina D."
- text: " Por el hallazgo de múltiples fracturas por estrés, se procedió a estudio en nuestras consultas, realizándose análisis con función renal, calcio sérico y urinario, calcio iónico, magnesio y PTH, que fueron normales."
- text: "Se solicitó una analítica que incluía hemograma, bioquímica, anticuerpos antinucleares (ANA) y serologías, examen de orina, así como biopsia de la lesión. Los resultados fueron normales, con ANA, anti-Sm, anti-RNP, anti-SSA, anti-SSB, anti-Jo1 y anti-Scl70 negativos."

---

# XLM_R_Galen-pharmaconer

This model is a finetuned version of XLM_R_Galen for the pharmaconer dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.915

Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information.

## Parameters used

| parameter               | Value |
|-------------------------|:-----:|
| batch size              |  16   |
| learning rate           | 3e-05  |
| classifier dropout      |  0.1   |
| warmup ratio            |   0   |
| warmup steps            |   0   |
| weight decay            |   0   |
| optimizer               | AdamW |
| epochs                  |   10  |
| early stopping patience |   3   |


## BibTeX entry and citation info

```bibtext
@article{10.1093/jamia/ocae054,
    author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma},
    title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks},
    journal = {Journal of the American Medical Informatics Association},
    volume = {31},
    number = {9},
    pages = {2137-2146},
    year = {2024},
    month = {03},
    issn = {1527-974X},
    doi = {10.1093/jamia/ocae054},
    url = {https://doi.org/10.1093/jamia/ocae054},
}
```