Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,41 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
license: apache-2.0
|
5 |
+
|
6 |
+
tags:
|
7 |
+
- T5
|
8 |
+
- chinese
|
9 |
+
- sentencepiece
|
10 |
+
|
11 |
+
inference: true
|
12 |
+
|
13 |
+
widget:
|
14 |
+
- text: "北京有悠久的 <extra_id_0>和 <extra_id_1>。"
|
15 |
+
- type: "text-generation"
|
16 |
+
|
17 |
---
|
18 |
+
# Randeng-T5-77M, one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM).
|
19 |
+
Based on mt5-small, Randeng-T5-77M only retains the vocabulary and embedding corresponding to Chinese and English, and continues to train on the basis of 180G Chinese general pre-training corpus. The pretrain target is span corruption. We pretrain the model based on our [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen), use 8 * A100 for 24 hours.
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
```python
|
25 |
+
from transformers import T5ForConditionalGeneration, AutoTokenizer
|
26 |
+
import torch
|
27 |
+
|
28 |
+
tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Randeng-T5-77M', use_fast=false)
|
29 |
+
model=T5ForConditionalGeneration.from_pretrained('IDEA-CCNL/Randeng-T5-77M')
|
30 |
+
```
|
31 |
+
|
32 |
+
## Citation
|
33 |
+
If you find the resource is useful, please cite the following website in your paper.
|
34 |
+
```
|
35 |
+
@misc{Fengshenbang-LM,
|
36 |
+
title={Fengshenbang-LM},
|
37 |
+
author={IDEA-CCNL},
|
38 |
+
year={2022},
|
39 |
+
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
|
40 |
+
}
|
41 |
+
```
|