fernandogd97
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -47,4 +47,21 @@ Users can utilize our pre-trained model in several ways:
|
|
47 |
from transformers import AutoModel, AutoTokenizer
|
48 |
|
49 |
model = AutoModel.from_pretrained("ICB-UMA/ClinLinker-KB-GP")
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained("ICB-UMA/ClinLinker-KB-GP")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
from transformers import AutoModel, AutoTokenizer
|
48 |
|
49 |
model = AutoModel.from_pretrained("ICB-UMA/ClinLinker-KB-GP")
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("ICB-UMA/ClinLinker-KB-GP")
|
51 |
+
|
52 |
+
|
53 |
+
## Limitations
|
54 |
+
- **Language Restriction:** ClinLinker-KB-GP is currently optimized for Spanish clinical corpora.
|
55 |
+
- **Expert Supervision:** While the model shows high accuracy in entity linking tasks, it is designed to assist semi-automated systems, requiring expert supervision for final validation.
|
56 |
+
|
57 |
+
## Citation
|
58 |
+
If you use ClinLinker-KB-GP in your research, please cite the following:
|
59 |
+
bibtex
|
60 |
+
@misc{gallego2024clinlinker,
|
61 |
+
title={ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish},
|
62 |
+
author={Fernando Gallego and Guillermo L贸pez-Garc铆a and Luis Gasco-S谩nchez and Martin Krallinger and Francisco J. Veredas},
|
63 |
+
year={2024},
|
64 |
+
eprint={2404.06367},
|
65 |
+
archivePrefix={arXiv},
|
66 |
+
primaryClass={cs.CL}
|
67 |
+
}
|