Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,101 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- IAmSkyDra/HCMUT_FAQ
|
5 |
+
language:
|
6 |
+
- vi
|
7 |
+
tags:
|
8 |
+
- education
|
9 |
+
widget:
|
10 |
+
- text: Chào bạn
|
11 |
+
output:
|
12 |
+
text: >-
|
13 |
+
Chào bạn! Tôi là GemSUra-edu, một trợ lý AI được phát triển bởi Long
|
14 |
+
Nguyen.
|
15 |
+
---
|
16 |
+
## Introduction
|
17 |
+
|
18 |
+
GemSUra-edu is a large language model fine-tuned on a dataset of FAQs from HCMUT, based on the pre-trained model [GemSUra 2B](https://huggingface.co/ura-hcmut/GemSUra-2B) developed by the URA research group at Ho Chi Minh City University of Technology (HCMUT).
|
19 |
+
|
20 |
+
## Inference (with Unsloth for higher speed)
|
21 |
+
|
22 |
+
```python
|
23 |
+
from unsloth import FastLanguageModel
|
24 |
+
import torch
|
25 |
+
|
26 |
+
# Load model and tokenizer
|
27 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
28 |
+
model_name="IAmSkyDra/GemSUra-edu",
|
29 |
+
max_seq_length=4096,
|
30 |
+
dtype=None,
|
31 |
+
load_in_4bit=True
|
32 |
+
)
|
33 |
+
|
34 |
+
FastLanguageModel.for_inference(model)
|
35 |
+
|
36 |
+
query_template = "<start_of_turn>user\n{query}<end_of_turn>\n<start_of_turn>model\n"
|
37 |
+
|
38 |
+
while True:
|
39 |
+
query = input("Query: ")
|
40 |
+
if query.lower() == "exit":
|
41 |
+
break
|
42 |
+
|
43 |
+
query = query_template.format(query=query)
|
44 |
+
inputs = tokenizer(query, return_tensors="pt")
|
45 |
+
|
46 |
+
outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=True)
|
47 |
+
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
48 |
+
answer = generated_text[0].split("model\n")[1].strip()
|
49 |
+
print(answer)
|
50 |
+
```
|
51 |
+
|
52 |
+
## Inference (with Transformers)
|
53 |
+
|
54 |
+
```python
|
55 |
+
import transformers
|
56 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
57 |
+
|
58 |
+
pipeline_kwargs = {
|
59 |
+
"temperature": 0.1,
|
60 |
+
"max_new_tokens": 4096,
|
61 |
+
"do_sample": True
|
62 |
+
}
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
# Load model
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
"IAmSkyDra/GemSUra-edu",
|
68 |
+
device_map="auto"
|
69 |
+
)
|
70 |
+
model.eval()
|
71 |
+
|
72 |
+
# Load tokenizer
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
74 |
+
"IAmSkyDra/GemSUra-edu",
|
75 |
+
trust_remote_code=True
|
76 |
+
)
|
77 |
+
|
78 |
+
pipeline = transformers.pipeline(
|
79 |
+
model=model,
|
80 |
+
tokenizer=tokenizer,
|
81 |
+
return_full_text=False,
|
82 |
+
task='text-generation',
|
83 |
+
**pipeline_kwargs
|
84 |
+
)
|
85 |
+
|
86 |
+
query_template = "<start_of_turn>user\n{query}<end_of_turn>\n<start_of_turn>model\n"
|
87 |
+
|
88 |
+
while True:
|
89 |
+
query = input("Query: ")
|
90 |
+
if query.lower() == "exit":
|
91 |
+
break
|
92 |
+
|
93 |
+
query = query_template.format(query=query)
|
94 |
+
answer = pipeline(query)[0]["generated_text"]
|
95 |
+
answer = answer.split("model\n")[1].strip()
|
96 |
+
print(answer)
|
97 |
+
```
|
98 |
+
|
99 |
+
## Notation
|
100 |
+
|
101 |
+
If you want to quantize the model for deployment on local devices, it should be quantized to at least 8 bits.
|