File size: 2,420 Bytes
2d51d31
97380a9
2d51d31
 
 
 
97380a9
 
2d51d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
base_model: vinai/bartpho-syllable
library_name: transformers
license: mit
metrics:
- sacrebleu
tags:
- generated_from_trainer
model-index:
- name: BART_Translation_Finetune_v0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BART_Translation_Finetune_v0

This model is a fine-tuned version of [vinai/bartpho-syllable](https://huggingface.co/vinai/bartpho-syllable) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4390
- Sacrebleu: 6.4288

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 100
- eval_batch_size: 100
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 0.7274        | 1.0   | 468  | 0.6396          | 1.4512    |
| 0.628         | 2.0   | 936  | 0.5901          | 2.1680    |
| 0.5744        | 3.0   | 1404 | 0.5431          | 3.0785    |
| 0.5348        | 4.0   | 1872 | 0.5141          | 3.9172    |
| 0.5044        | 5.0   | 2340 | 0.4905          | 4.3428    |
| 0.4773        | 6.0   | 2808 | 0.4758          | 4.8562    |
| 0.4575        | 7.0   | 3276 | 0.4647          | 5.2799    |
| 0.4372        | 8.0   | 3744 | 0.4572          | 5.5700    |
| 0.429         | 9.0   | 4212 | 0.4499          | 5.8456    |
| 0.4118        | 10.0  | 4680 | 0.4455          | 6.0842    |
| 0.4056        | 11.0  | 5148 | 0.4424          | 6.2403    |
| 0.3924        | 12.0  | 5616 | 0.4403          | 6.2796    |
| 0.3858        | 13.0  | 6084 | 0.4396          | 6.3191    |
| 0.386         | 14.0  | 6552 | 0.4389          | 6.4120    |
| 0.3809        | 15.0  | 7020 | 0.4390          | 6.4288    |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0