File size: 7,911 Bytes
2f6628d
 
 
 
 
 
 
 
 
fd48f4d
2f6628d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd48f4d
2f6628d
 
fd48f4d
2f6628d
 
fd48f4d
2f6628d
 
fd48f4d
2f6628d
 
fd48f4d
2f6628d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "acb67391",
   "metadata": {},
   "source": [
    "# NLP demo software by HyperbeeAI\n",
    "\n",
    "Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] \n",
    "\n",
    "### Evaluation\n",
    "\n",
    "This notebook evaluates the model on the test set with chosen examples, and calculates the BLEU score. A simulation of the ai85 chip implemented in pytorch is used for this purpose. See imported .py modules for further info."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "3899e26e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "imported utils.py\n",
      "NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
      "\n",
      "imported layers.py\n",
      "NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
      "\n",
      "imported functions.py\n",
      "NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
      "\n",
      "imported models.py\n",
      "NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
      "\n",
      "imported dataloader.py\n",
      "NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "import torch, random\n",
    "import torch.nn as nn\n",
    "from torchtext.legacy.datasets import TranslationDataset\n",
    "from torchtext.legacy.data     import Field, BucketIterator\n",
    "from utils      import tokenize_es, tokenize_en, tokenizer_es, tokenizer_en, TRG_PAD_IDX, \\\n",
    "                       translate_sentence, calculate_bleu\n",
    "from models     import encoder, decoder, seq2seq\n",
    "from dataloader import NewsDataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "812af6e8",
   "metadata": {},
   "outputs": [],
   "source": [
    "SEED = 1234\n",
    "random.seed(SEED)\n",
    "torch.manual_seed(SEED)\n",
    "torch.cuda.manual_seed(SEED)\n",
    "torch.backends.cudnn.deterministic = True\n",
    "BATCH_SIZE  = 48"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "b5717979",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Working with device: cuda\n"
     ]
    }
   ],
   "source": [
    "SRC = Field(tokenize = tokenize_es, \n",
    "            init_token = tokenizer_es.token_to_id(\"<BOS>\"), \n",
    "            eos_token = tokenizer_es.token_to_id(\"<EOS>\"), \n",
    "            pad_token = tokenizer_es.token_to_id(\"<PAD>\"),\n",
    "            unk_token = tokenizer_es.token_to_id(\"<UNK>\"),\n",
    "            use_vocab = False,\n",
    "            batch_first = True)\n",
    "\n",
    "TRG = Field(tokenize = tokenize_en, \n",
    "            init_token = tokenizer_en.token_to_id(\"<BOS>\"), \n",
    "            eos_token = tokenizer_en.token_to_id(\"<EOS>\"), \n",
    "            pad_token = tokenizer_en.token_to_id(\"<PAD>\"),\n",
    "            unk_token = tokenizer_en.token_to_id(\"<UNK>\"),\n",
    "            use_vocab = False,\n",
    "            batch_first = True)\n",
    "\n",
    "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
    "#device = 'cpu'\n",
    "print(\"Working with device:\", device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "5819e256",
   "metadata": {},
   "outputs": [],
   "source": [
    "train_data, valid_data, test_data = NewsDataset.splits(exts=('.es', '.en'), fields=(SRC, TRG))\n",
    "_, _, test_iterator = BucketIterator.splits(\n",
    "    (train_data, valid_data, test_data),\n",
    "    batch_size = BATCH_SIZE,\n",
    "    device = device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a2cbdf99",
   "metadata": {},
   "outputs": [],
   "source": [
    "enc   = encoder(device)\n",
    "dec   = decoder(device, TRG_PAD_IDX)\n",
    "model = seq2seq(enc, dec)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "516e80e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "trained_checkpoint = \"assets/es2en_hw_cp6.pt\"\n",
    "res = model.load_state_dict(torch.load(trained_checkpoint, map_location=device), strict=False);\n",
    "model.to(device);"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "14a2a9ef",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example from test data:\n",
      "trg = for a relatively poor country like china , real unions could help balance employers ’ power , bringing quality - of - life benefits that outweigh the growth costs .\n",
      "\n",
      "predicted trg = for a relatively poor country as china , the existence of real unions could help balance employers ’ power , generating higher life benefits than the costs for growth .\n",
      "\n",
      "src = para un país relativamente pobre como es china , la existencia de sindicatos reales podría ayudar a equilibrar el poder de los empleadores , generando beneficios de calidad de vida mayores que los costes para el crecimiento .\n",
      "\n"
     ]
    }
   ],
   "source": [
    "print(\"Example from test data:\")\n",
    "example_idx = 800\n",
    "src = vars(test_data.examples[example_idx])['src']\n",
    "trg = tokenizer_en.decode(vars(test_data.examples[example_idx])['trg'], skip_special_tokens=False)\n",
    "print(f'trg = {trg}')\n",
    "print(\"\")\n",
    "translation = translate_sentence(src, SRC, TRG, model, device)\n",
    "print(f'predicted trg = {translation}')\n",
    "print(\"\")\n",
    "src = tokenizer_es.decode(src, skip_special_tokens=False)\n",
    "print(f'src = {src}')\n",
    "print(\"\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "7e64577f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "1it [00:00,  5.08it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Evaluate on bleu:\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "3998it [14:55,  4.47it/s]\n",
      "That's 100 lines that end in a tokenized period ('.')\n",
      "It looks like you forgot to detokenize your test data, which may hurt your score.\n",
      "If you insist your data is detokenized, or don't care, you can suppress this message with '--force'.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "BLEU score:\n",
      "{'score': 28.35048236992193, 'counts': [57540, 32851, 20648, 13309], 'totals': [100210, 96590, 92970, 89354], 'precisions': [57.41941921963876, 34.01076716016151, 22.209314832741743, 14.894688542202923], 'bp': 1.0, 'sys_len': 100210, 'ref_len': 91115}\n"
     ]
    }
   ],
   "source": [
    "b_score    = calculate_bleu(test_data, SRC, TRG, model, device)\n",
    "print('BLEU score:')\n",
    "print(b_score)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dd6ae971",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}