File size: 7,911 Bytes
2f6628d fd48f4d 2f6628d fd48f4d 2f6628d fd48f4d 2f6628d fd48f4d 2f6628d fd48f4d 2f6628d fd48f4d 2f6628d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
{
"cells": [
{
"cell_type": "markdown",
"id": "acb67391",
"metadata": {},
"source": [
"# NLP demo software by HyperbeeAI\n",
"\n",
"Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] \n",
"\n",
"### Evaluation\n",
"\n",
"This notebook evaluates the model on the test set with chosen examples, and calculates the BLEU score. A simulation of the ai85 chip implemented in pytorch is used for this purpose. See imported .py modules for further info."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3899e26e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"imported utils.py\n",
"NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
"\n",
"imported layers.py\n",
"NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
"\n",
"imported functions.py\n",
"NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
"\n",
"imported models.py\n",
"NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
"\n",
"imported dataloader.py\n",
"NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]\n",
"\n"
]
}
],
"source": [
"import torch, random\n",
"import torch.nn as nn\n",
"from torchtext.legacy.datasets import TranslationDataset\n",
"from torchtext.legacy.data import Field, BucketIterator\n",
"from utils import tokenize_es, tokenize_en, tokenizer_es, tokenizer_en, TRG_PAD_IDX, \\\n",
" translate_sentence, calculate_bleu\n",
"from models import encoder, decoder, seq2seq\n",
"from dataloader import NewsDataset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "812af6e8",
"metadata": {},
"outputs": [],
"source": [
"SEED = 1234\n",
"random.seed(SEED)\n",
"torch.manual_seed(SEED)\n",
"torch.cuda.manual_seed(SEED)\n",
"torch.backends.cudnn.deterministic = True\n",
"BATCH_SIZE = 48"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b5717979",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Working with device: cuda\n"
]
}
],
"source": [
"SRC = Field(tokenize = tokenize_es, \n",
" init_token = tokenizer_es.token_to_id(\"<BOS>\"), \n",
" eos_token = tokenizer_es.token_to_id(\"<EOS>\"), \n",
" pad_token = tokenizer_es.token_to_id(\"<PAD>\"),\n",
" unk_token = tokenizer_es.token_to_id(\"<UNK>\"),\n",
" use_vocab = False,\n",
" batch_first = True)\n",
"\n",
"TRG = Field(tokenize = tokenize_en, \n",
" init_token = tokenizer_en.token_to_id(\"<BOS>\"), \n",
" eos_token = tokenizer_en.token_to_id(\"<EOS>\"), \n",
" pad_token = tokenizer_en.token_to_id(\"<PAD>\"),\n",
" unk_token = tokenizer_en.token_to_id(\"<UNK>\"),\n",
" use_vocab = False,\n",
" batch_first = True)\n",
"\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"#device = 'cpu'\n",
"print(\"Working with device:\", device)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5819e256",
"metadata": {},
"outputs": [],
"source": [
"train_data, valid_data, test_data = NewsDataset.splits(exts=('.es', '.en'), fields=(SRC, TRG))\n",
"_, _, test_iterator = BucketIterator.splits(\n",
" (train_data, valid_data, test_data),\n",
" batch_size = BATCH_SIZE,\n",
" device = device)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a2cbdf99",
"metadata": {},
"outputs": [],
"source": [
"enc = encoder(device)\n",
"dec = decoder(device, TRG_PAD_IDX)\n",
"model = seq2seq(enc, dec)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "516e80e4",
"metadata": {},
"outputs": [],
"source": [
"trained_checkpoint = \"assets/es2en_hw_cp6.pt\"\n",
"res = model.load_state_dict(torch.load(trained_checkpoint, map_location=device), strict=False);\n",
"model.to(device);"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "14a2a9ef",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example from test data:\n",
"trg = for a relatively poor country like china , real unions could help balance employers ’ power , bringing quality - of - life benefits that outweigh the growth costs .\n",
"\n",
"predicted trg = for a relatively poor country as china , the existence of real unions could help balance employers ’ power , generating higher life benefits than the costs for growth .\n",
"\n",
"src = para un país relativamente pobre como es china , la existencia de sindicatos reales podría ayudar a equilibrar el poder de los empleadores , generando beneficios de calidad de vida mayores que los costes para el crecimiento .\n",
"\n"
]
}
],
"source": [
"print(\"Example from test data:\")\n",
"example_idx = 800\n",
"src = vars(test_data.examples[example_idx])['src']\n",
"trg = tokenizer_en.decode(vars(test_data.examples[example_idx])['trg'], skip_special_tokens=False)\n",
"print(f'trg = {trg}')\n",
"print(\"\")\n",
"translation = translate_sentence(src, SRC, TRG, model, device)\n",
"print(f'predicted trg = {translation}')\n",
"print(\"\")\n",
"src = tokenizer_es.decode(src, skip_special_tokens=False)\n",
"print(f'src = {src}')\n",
"print(\"\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7e64577f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"1it [00:00, 5.08it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluate on bleu:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"3998it [14:55, 4.47it/s]\n",
"That's 100 lines that end in a tokenized period ('.')\n",
"It looks like you forgot to detokenize your test data, which may hurt your score.\n",
"If you insist your data is detokenized, or don't care, you can suppress this message with '--force'.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"BLEU score:\n",
"{'score': 28.35048236992193, 'counts': [57540, 32851, 20648, 13309], 'totals': [100210, 96590, 92970, 89354], 'precisions': [57.41941921963876, 34.01076716016151, 22.209314832741743, 14.894688542202923], 'bp': 1.0, 'sys_len': 100210, 'ref_len': 91115}\n"
]
}
],
"source": [
"b_score = calculate_bleu(test_data, SRC, TRG, model, device)\n",
"print('BLEU score:')\n",
"print(b_score)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd6ae971",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|