mistralic-expert-15 / checkpoint-200 /trainer_state.json
pharaouk's picture
Training in progress, step 200, checkpoint
4499a02
raw
history blame
6.48 kB
{
"best_metric": 0.7465175986289978,
"best_model_checkpoint": "experts/mistralic-expert-15/checkpoint-200",
"epoch": 0.06571921465538487,
"eval_steps": 200,
"global_step": 200,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.8512,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7338,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7805,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7586,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7571,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.8492,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.8117,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7952,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8803,
"step": 90
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8204,
"step": 100
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.786,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8291,
"step": 120
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7895,
"step": 130
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.8262,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.8268,
"step": 150
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.8834,
"step": 160
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7672,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7865,
"step": 180
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8137,
"step": 190
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.7671,
"step": 200
},
{
"epoch": 0.07,
"eval_loss": 0.7465175986289978,
"eval_runtime": 133.0528,
"eval_samples_per_second": 7.516,
"eval_steps_per_second": 3.758,
"step": 200
},
{
"epoch": 0.07,
"mmlu_eval_accuracy": 0.5902724593152844,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.8125,
"mmlu_eval_accuracy_business_ethics": 0.7272727272727273,
"mmlu_eval_accuracy_clinical_knowledge": 0.5862068965517241,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.45454545454545453,
"mmlu_eval_accuracy_college_medicine": 0.6363636363636364,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.5,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.5625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.5813953488372093,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6153846153846154,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.85,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 1.0,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.5454545454545454,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.88,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.7558139534883721,
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685,
"mmlu_eval_accuracy_moral_scenarios": 0.37,
"mmlu_eval_accuracy_nutrition": 0.696969696969697,
"mmlu_eval_accuracy_philosophy": 0.7647058823529411,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.6129032258064516,
"mmlu_eval_accuracy_professional_law": 0.3941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.6451612903225806,
"mmlu_eval_accuracy_professional_psychology": 0.5942028985507246,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.6296296296296297,
"mmlu_eval_accuracy_sociology": 0.8181818181818182,
"mmlu_eval_accuracy_us_foreign_policy": 0.9090909090909091,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 1.3589041333441323,
"step": 200
}
],
"logging_steps": 10,
"max_steps": 9129,
"num_train_epochs": 3,
"save_steps": 200,
"total_flos": 1.0625300432800973e+17,
"trial_name": null,
"trial_params": null
}