prateeky2806's picture
Training in progress, step 800
ea6a3ba
{
"best_metric": 0.7810184359550476,
"best_model_checkpoint": "./output_v2/7b_cluster022_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_022/checkpoint-800",
"epoch": 0.2822118352588412,
"global_step": 800,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.8325,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8202,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7466,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7549,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7569,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7691,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.744,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7708,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8071,
"step": 90
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7303,
"step": 100
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.6861,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7592,
"step": 120
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7361,
"step": 130
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.76,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7617,
"step": 150
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7073,
"step": 160
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7581,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7636,
"step": 180
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.7712,
"step": 190
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.7547,
"step": 200
},
{
"epoch": 0.07,
"eval_loss": 0.8007758259773254,
"eval_runtime": 185.4331,
"eval_samples_per_second": 5.393,
"eval_steps_per_second": 2.696,
"step": 200
},
{
"epoch": 0.07,
"mmlu_eval_accuracy": 0.4659766842502547,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0009409290575484,
"step": 200
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.7814,
"step": 210
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7313,
"step": 220
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7217,
"step": 230
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7299,
"step": 240
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7229,
"step": 250
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7271,
"step": 260
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7253,
"step": 270
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7371,
"step": 280
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7434,
"step": 290
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.6741,
"step": 300
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7386,
"step": 310
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7441,
"step": 320
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7243,
"step": 330
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7534,
"step": 340
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7187,
"step": 350
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.7508,
"step": 360
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.7597,
"step": 370
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.7398,
"step": 380
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6924,
"step": 390
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7035,
"step": 400
},
{
"epoch": 0.14,
"eval_loss": 0.7900036573410034,
"eval_runtime": 188.9686,
"eval_samples_per_second": 5.292,
"eval_steps_per_second": 2.646,
"step": 400
},
{
"epoch": 0.14,
"mmlu_eval_accuracy": 0.45327850420813054,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5625,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0370562722026213,
"step": 400
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7245,
"step": 410
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8027,
"step": 420
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.7174,
"step": 430
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.7471,
"step": 440
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.7263,
"step": 450
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.7001,
"step": 460
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7767,
"step": 470
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7406,
"step": 480
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7371,
"step": 490
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7152,
"step": 500
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.746,
"step": 510
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7178,
"step": 520
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7056,
"step": 530
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.6961,
"step": 540
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.673,
"step": 550
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7508,
"step": 560
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7508,
"step": 570
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7122,
"step": 580
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7154,
"step": 590
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7587,
"step": 600
},
{
"epoch": 0.21,
"eval_loss": 0.785829484462738,
"eval_runtime": 189.436,
"eval_samples_per_second": 5.279,
"eval_steps_per_second": 2.639,
"step": 600
},
{
"epoch": 0.21,
"mmlu_eval_accuracy": 0.4748863496985387,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5625,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.3225806451612903,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 0.9638749470559798,
"step": 600
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.8107,
"step": 610
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7193,
"step": 620
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7275,
"step": 630
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.7553,
"step": 640
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.7385,
"step": 650
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.7071,
"step": 660
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.7395,
"step": 670
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.7512,
"step": 680
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.7063,
"step": 690
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.723,
"step": 700
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7068,
"step": 710
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7211,
"step": 720
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.7123,
"step": 730
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.6394,
"step": 740
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.679,
"step": 750
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.7402,
"step": 760
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.7634,
"step": 770
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.7253,
"step": 780
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.7497,
"step": 790
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.7008,
"step": 800
},
{
"epoch": 0.28,
"eval_loss": 0.7810184359550476,
"eval_runtime": 187.2684,
"eval_samples_per_second": 5.34,
"eval_steps_per_second": 2.67,
"step": 800
},
{
"epoch": 0.28,
"mmlu_eval_accuracy": 0.46145585660156935,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.074835775843177,
"step": 800
}
],
"max_steps": 5000,
"num_train_epochs": 2,
"total_flos": 1.842037467536425e+17,
"trial_name": null,
"trial_params": null
}