Nous-Hermes-llama-2-7b_7b_cluster022_partitioned_v3_standardized_022
/
checkpoint-800
/trainer_state.json
{ | |
"best_metric": 0.7810184359550476, | |
"best_model_checkpoint": "./output_v2/7b_cluster022_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_022/checkpoint-800", | |
"epoch": 0.2822118352588412, | |
"global_step": 800, | |
"is_hyper_param_search": false, | |
"is_local_process_zero": true, | |
"is_world_process_zero": true, | |
"log_history": [ | |
{ | |
"epoch": 0.0, | |
"learning_rate": 0.0002, | |
"loss": 0.8325, | |
"step": 10 | |
}, | |
{ | |
"epoch": 0.01, | |
"learning_rate": 0.0002, | |
"loss": 0.8202, | |
"step": 20 | |
}, | |
{ | |
"epoch": 0.01, | |
"learning_rate": 0.0002, | |
"loss": 0.7466, | |
"step": 30 | |
}, | |
{ | |
"epoch": 0.01, | |
"learning_rate": 0.0002, | |
"loss": 0.7549, | |
"step": 40 | |
}, | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.7569, | |
"step": 50 | |
}, | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.7691, | |
"step": 60 | |
}, | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.744, | |
"step": 70 | |
}, | |
{ | |
"epoch": 0.03, | |
"learning_rate": 0.0002, | |
"loss": 0.7708, | |
"step": 80 | |
}, | |
{ | |
"epoch": 0.03, | |
"learning_rate": 0.0002, | |
"loss": 0.8071, | |
"step": 90 | |
}, | |
{ | |
"epoch": 0.04, | |
"learning_rate": 0.0002, | |
"loss": 0.7303, | |
"step": 100 | |
}, | |
{ | |
"epoch": 0.04, | |
"learning_rate": 0.0002, | |
"loss": 0.6861, | |
"step": 110 | |
}, | |
{ | |
"epoch": 0.04, | |
"learning_rate": 0.0002, | |
"loss": 0.7592, | |
"step": 120 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.7361, | |
"step": 130 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.76, | |
"step": 140 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.7617, | |
"step": 150 | |
}, | |
{ | |
"epoch": 0.06, | |
"learning_rate": 0.0002, | |
"loss": 0.7073, | |
"step": 160 | |
}, | |
{ | |
"epoch": 0.06, | |
"learning_rate": 0.0002, | |
"loss": 0.7581, | |
"step": 170 | |
}, | |
{ | |
"epoch": 0.06, | |
"learning_rate": 0.0002, | |
"loss": 0.7636, | |
"step": 180 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 0.7712, | |
"step": 190 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 0.7547, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.07, | |
"eval_loss": 0.8007758259773254, | |
"eval_runtime": 185.4331, | |
"eval_samples_per_second": 5.393, | |
"eval_steps_per_second": 2.696, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.07, | |
"mmlu_eval_accuracy": 0.4659766842502547, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.6428571428571429, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, | |
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, | |
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.0009409290575484, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 0.7814, | |
"step": 210 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.7313, | |
"step": 220 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.7217, | |
"step": 230 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.7299, | |
"step": 240 | |
}, | |
{ | |
"epoch": 0.09, | |
"learning_rate": 0.0002, | |
"loss": 0.7229, | |
"step": 250 | |
}, | |
{ | |
"epoch": 0.09, | |
"learning_rate": 0.0002, | |
"loss": 0.7271, | |
"step": 260 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 0.7253, | |
"step": 270 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 0.7371, | |
"step": 280 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 0.7434, | |
"step": 290 | |
}, | |
{ | |
"epoch": 0.11, | |
"learning_rate": 0.0002, | |
"loss": 0.6741, | |
"step": 300 | |
}, | |
{ | |
"epoch": 0.11, | |
"learning_rate": 0.0002, | |
"loss": 0.7386, | |
"step": 310 | |
}, | |
{ | |
"epoch": 0.11, | |
"learning_rate": 0.0002, | |
"loss": 0.7441, | |
"step": 320 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.7243, | |
"step": 330 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.7534, | |
"step": 340 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.7187, | |
"step": 350 | |
}, | |
{ | |
"epoch": 0.13, | |
"learning_rate": 0.0002, | |
"loss": 0.7508, | |
"step": 360 | |
}, | |
{ | |
"epoch": 0.13, | |
"learning_rate": 0.0002, | |
"loss": 0.7597, | |
"step": 370 | |
}, | |
{ | |
"epoch": 0.13, | |
"learning_rate": 0.0002, | |
"loss": 0.7398, | |
"step": 380 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.6924, | |
"step": 390 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.7035, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.14, | |
"eval_loss": 0.7900036573410034, | |
"eval_runtime": 188.9686, | |
"eval_samples_per_second": 5.292, | |
"eval_steps_per_second": 2.646, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.14, | |
"mmlu_eval_accuracy": 0.45327850420813054, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5625, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.0, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.45454545454545453, | |
"mmlu_eval_accuracy_marketing": 0.76, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.5454545454545454, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.35294117647058826, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, | |
"mmlu_eval_accuracy_public_relations": 0.6666666666666666, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.0370562722026213, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.7245, | |
"step": 410 | |
}, | |
{ | |
"epoch": 0.15, | |
"learning_rate": 0.0002, | |
"loss": 0.8027, | |
"step": 420 | |
}, | |
{ | |
"epoch": 0.15, | |
"learning_rate": 0.0002, | |
"loss": 0.7174, | |
"step": 430 | |
}, | |
{ | |
"epoch": 0.16, | |
"learning_rate": 0.0002, | |
"loss": 0.7471, | |
"step": 440 | |
}, | |
{ | |
"epoch": 0.16, | |
"learning_rate": 0.0002, | |
"loss": 0.7263, | |
"step": 450 | |
}, | |
{ | |
"epoch": 0.16, | |
"learning_rate": 0.0002, | |
"loss": 0.7001, | |
"step": 460 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 0.7767, | |
"step": 470 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 0.7406, | |
"step": 480 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 0.7371, | |
"step": 490 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 0.7152, | |
"step": 500 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 0.746, | |
"step": 510 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 0.7178, | |
"step": 520 | |
}, | |
{ | |
"epoch": 0.19, | |
"learning_rate": 0.0002, | |
"loss": 0.7056, | |
"step": 530 | |
}, | |
{ | |
"epoch": 0.19, | |
"learning_rate": 0.0002, | |
"loss": 0.6961, | |
"step": 540 | |
}, | |
{ | |
"epoch": 0.19, | |
"learning_rate": 0.0002, | |
"loss": 0.673, | |
"step": 550 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 0.7508, | |
"step": 560 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 0.7508, | |
"step": 570 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 0.7122, | |
"step": 580 | |
}, | |
{ | |
"epoch": 0.21, | |
"learning_rate": 0.0002, | |
"loss": 0.7154, | |
"step": 590 | |
}, | |
{ | |
"epoch": 0.21, | |
"learning_rate": 0.0002, | |
"loss": 0.7587, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.21, | |
"eval_loss": 0.785829484462738, | |
"eval_runtime": 189.436, | |
"eval_samples_per_second": 5.279, | |
"eval_steps_per_second": 2.639, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.21, | |
"mmlu_eval_accuracy": 0.4748863496985387, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5625, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.25, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.5, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.6363636363636364, | |
"mmlu_eval_accuracy_marketing": 0.76, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.5454545454545454, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, | |
"mmlu_eval_accuracy_professional_medicine": 0.3225806451612903, | |
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.5925925925925926, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7894736842105263, | |
"mmlu_loss": 0.9638749470559798, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 0.8107, | |
"step": 610 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 0.7193, | |
"step": 620 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 0.7275, | |
"step": 630 | |
}, | |
{ | |
"epoch": 0.23, | |
"learning_rate": 0.0002, | |
"loss": 0.7553, | |
"step": 640 | |
}, | |
{ | |
"epoch": 0.23, | |
"learning_rate": 0.0002, | |
"loss": 0.7385, | |
"step": 650 | |
}, | |
{ | |
"epoch": 0.23, | |
"learning_rate": 0.0002, | |
"loss": 0.7071, | |
"step": 660 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 0.7395, | |
"step": 670 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 0.7512, | |
"step": 680 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 0.7063, | |
"step": 690 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 0.723, | |
"step": 700 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 0.7068, | |
"step": 710 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 0.7211, | |
"step": 720 | |
}, | |
{ | |
"epoch": 0.26, | |
"learning_rate": 0.0002, | |
"loss": 0.7123, | |
"step": 730 | |
}, | |
{ | |
"epoch": 0.26, | |
"learning_rate": 0.0002, | |
"loss": 0.6394, | |
"step": 740 | |
}, | |
{ | |
"epoch": 0.26, | |
"learning_rate": 0.0002, | |
"loss": 0.679, | |
"step": 750 | |
}, | |
{ | |
"epoch": 0.27, | |
"learning_rate": 0.0002, | |
"loss": 0.7402, | |
"step": 760 | |
}, | |
{ | |
"epoch": 0.27, | |
"learning_rate": 0.0002, | |
"loss": 0.7634, | |
"step": 770 | |
}, | |
{ | |
"epoch": 0.28, | |
"learning_rate": 0.0002, | |
"loss": 0.7253, | |
"step": 780 | |
}, | |
{ | |
"epoch": 0.28, | |
"learning_rate": 0.0002, | |
"loss": 0.7497, | |
"step": 790 | |
}, | |
{ | |
"epoch": 0.28, | |
"learning_rate": 0.0002, | |
"loss": 0.7008, | |
"step": 800 | |
}, | |
{ | |
"epoch": 0.28, | |
"eval_loss": 0.7810184359550476, | |
"eval_runtime": 187.2684, | |
"eval_samples_per_second": 5.34, | |
"eval_steps_per_second": 2.67, | |
"step": 800 | |
}, | |
{ | |
"epoch": 0.28, | |
"mmlu_eval_accuracy": 0.46145585660156935, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7, | |
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.5454545454545454, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, | |
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, | |
"mmlu_eval_accuracy_professional_law": 0.3352941176470588, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.48148148148148145, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.074835775843177, | |
"step": 800 | |
} | |
], | |
"max_steps": 5000, | |
"num_train_epochs": 2, | |
"total_flos": 1.842037467536425e+17, | |
"trial_name": null, | |
"trial_params": null | |
} | |