Safetensors
English
mistral
axolotl
dpo
trl
Eval Results
Weyaxi commited on
Commit
45b80bd
·
verified ·
1 Parent(s): f0f9cea

model card

Browse files
Files changed (1) hide show
  1. README.md +144 -0
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-Nemo-Instruct-2407
3
+ license: apache-2.0
4
+ tags:
5
+ - axolotl
6
+ - dpo
7
+ - trl
8
+ - generated_from_trainer
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
15
+ <details><summary>See axolotl config</summary>
16
+
17
+ axolotl version: `0.4.1`
18
+ ```yaml
19
+ base_model: mistralai/Mistral-Nemo-Instruct-2407
20
+ model_type: MistralForCausalLM
21
+ tokenizer_type: AutoTokenizer
22
+
23
+ load_in_8bit: true
24
+ load_in_4bit: false
25
+ strict: false
26
+
27
+ chat_template: inst
28
+ rl: dpo
29
+ datasets:
30
+ - path: HumanLLMs/humanish-dpo-project
31
+ type: chatml.prompt_pairs
32
+ conversation: mistral
33
+
34
+ dataset_prepared_path: last_run_prepared
35
+ val_set_size: 0.05
36
+ output_dir: ./humanish-mistral-nemo-instruct-2407
37
+
38
+ sequence_len: 8192
39
+ sample_packing: false
40
+ pad_to_sequence_len: true
41
+
42
+ adapter: lora
43
+ lora_model_dir:
44
+ lora_r: 8
45
+ lora_alpha: 4
46
+ lora_dropout: 0.05
47
+ lora_target_linear: true
48
+ lora_fan_in_fan_out:
49
+
50
+ wandb_project: Humanish-DPO
51
+ wandb_entity:
52
+ wandb_watch:
53
+ wandb_name:
54
+ wandb_log_model:
55
+
56
+ hub_model_id: HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407
57
+
58
+ gradient_accumulation_steps: 8
59
+ micro_batch_size: 2
60
+ num_epochs: 1
61
+ optimizer: adamw_bnb_8bit
62
+ lr_scheduler: cosine
63
+ learning_rate: 0.0002
64
+
65
+ train_on_inputs: false
66
+ group_by_length: false
67
+ bf16: auto
68
+ fp16:
69
+ tf32: false
70
+
71
+ gradient_checkpointing: true
72
+ early_stopping_patience:
73
+ resume_from_checkpoint:
74
+ local_rank:
75
+ logging_steps: 1
76
+ xformers_attention:
77
+ flash_attention: true
78
+ s2_attention:
79
+
80
+ warmup_steps: 10
81
+ evals_per_epoch: 2
82
+ eval_table_size:
83
+ eval_max_new_tokens: 128
84
+ saves_per_epoch: 1
85
+ debug:
86
+ deepspeed:
87
+ weight_decay: 0.0
88
+ fsdp:
89
+ fsdp_config:
90
+
91
+ special_tokens:
92
+ pad_token: </s>
93
+
94
+ save_safetensors: true
95
+ ```
96
+
97
+ </details><br>
98
+
99
+ # Humanish-Mistral-Nemo-Instruct-2407
100
+
101
+ This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on an unknown dataset.
102
+
103
+ ## Model description
104
+
105
+ More information needed
106
+
107
+ ## Intended uses & limitations
108
+
109
+ More information needed
110
+
111
+ ## Training and evaluation data
112
+
113
+ More information needed
114
+
115
+ ## Training procedure
116
+
117
+ ### Training hyperparameters
118
+
119
+ The following hyperparameters were used during training:
120
+ - learning_rate: 0.0002
121
+ - train_batch_size: 2
122
+ - eval_batch_size: 8
123
+ - seed: 42
124
+ - distributed_type: multi-GPU
125
+ - num_devices: 2
126
+ - gradient_accumulation_steps: 8
127
+ - total_train_batch_size: 32
128
+ - total_eval_batch_size: 16
129
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
130
+ - lr_scheduler_type: cosine
131
+ - lr_scheduler_warmup_steps: 10
132
+ - training_steps: 341
133
+
134
+ ### Training results
135
+
136
+
137
+
138
+ ### Framework versions
139
+
140
+ - PEFT 0.13.0
141
+ - Transformers 4.45.1
142
+ - Pytorch 2.3.1+cu121
143
+ - Datasets 2.21.0
144
+ - Tokenizers 0.20.0