File size: 4,906 Bytes
887618c
 
5361082
 
 
 
f730b73
 
 
 
 
 
 
 
 
 
5361082
 
 
 
 
 
 
887618c
 
5361082
887618c
5361082
887618c
f730b73
5361082
887618c
5361082
 
 
 
 
887618c
5361082
887618c
5361082
65732f7
887618c
 
 
65732f7
887618c
5361082
887618c
5361082
887618c
5361082
887618c
5361082
 
 
 
 
887618c
 
5361082
887618c
5361082
887618c
65732f7
887618c
 
5361082
887618c
5361082
887618c
5361082
887618c
5361082
 
 
 
 
 
 
 
 
887618c
5361082
887618c
5361082
 
b338671
887618c
c0282b1
65732f7
b338671
c0282b1
b338671
 
c0282b1
65732f7
0c4f490
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
library_name: transformers
license: apache-2.0
datasets:
- HuggingFaceM4/the_cauldron
- HuggingFaceM4/Docmatix
- lmms-lab/LLaVA-OneVision-Data
- lmms-lab/M4-Instruct-Data
- HuggingFaceFV/finevideo
- MAmmoTH-VL/MAmmoTH-VL-Instruct-12M
- lmms-lab/LLaVA-Video-178K
- orrzohar/Video-STaR
- Mutonix/Vript
- TIGER-Lab/VISTA-400K
- Enxin/MovieChat-1K_train
- ShareGPT4Video/ShareGPT4Video
pipeline_tag: video-text-to-text
language:
- en
base_model:
- HuggingFaceTB/SmolLM2-360M-Instruct
- google/siglip-base-patch16-512
- HuggingFaceTB/SmolVLM-500M-Instruct
---

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/SmolVLM2_banner.png" width="800" height="auto" alt="Image description">

# SmolVLM2-500M-Video

SmolVLM2-500M-Video is a lightweight multimodal model designed to analyze video content. The model processes videos, images, and text inputs to generate text outputs - whether answering questions about media files, comparing visual content, or transcribing text from images. Despite its compact size, requiring only 1.8GB of GPU RAM for video inference, it delivers robust performance on complex multimodal tasks. This efficiency makes it particularly well-suited for on-device applications where computational resources may be limited.
## Model Summary

- **Developed by:** Hugging Face 🤗
- **Model type:** Multi-modal model (video+text)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Architecture:** Based on [Idefics3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) (see technical summary)

## Resources

- **Demo:** [Video Highlight Generator](https://huggingface.co/spaces/HuggingFaceTB/SmolVLM2-HighlightGenerator)
- **Blog:** [Blog post](https://huggingface.co/blog/smolvlm2)

## Uses

SmolVLM2 can be used for inference on multimodal (video / image / text) tasks where the input consists of text queries along with video or one or more images. Text and media files can be interleaved arbitrarily, enabling tasks like captioning, visual question answering, and storytelling based on visual content. The model does not support image or video generation.

To fine-tune SmolVLM2 on a specific task, you can follow [the fine-tuning tutorial](UPDATE).

## Evaluation 

We evaluated the performance of the SmolVLM2 family on the following scientific benchmarks:

| Size    | Video-MME | MLVU | MVBench |
|----------|-----------------|----------|---------------|
| 2.2B   | 52.1            | 55.2     | 46.27        |
| 500M | 42.2            | 47.3     | 39.73        |
| 256M | 33.7            | 40.6     | 32.7          |


### How to get started

You can use transformers to load, infer and fine-tune SmolVLM.

[TODO]


### Model optimizations

## Misuse and Out-of-scope Use

SmolVLM is not intended for high-stakes scenarios or critical decision-making processes that affect an individual's well-being or livelihood. The model may produce content that appears factual but may not be accurate. Misuse includes, but is not limited to:

- Prohibited Uses:
  - Evaluating or scoring individuals (e.g., in employment, education, credit)
  - Critical automated decision-making
  - Generating unreliable factual content
- Malicious Activities:
  - Spam generation
  - Disinformation campaigns
  - Harassment or abuse
  - Unauthorized surveillance

### License

SmolVLM2 is built upon [SigLIP](https://huggingface.co/google/siglip-base-patch16-512) as image encoder and [SmolLM2](https://huggingface.co/HuggingFaceTB/SmolLM2-360M-Instruct) for text decoder part.

We release the SmolVLM2 checkpoints under the Apache 2.0 license.

## Training Data
SmolVLM2 used 3.3M samples for training originally from ten different datasets: [LlaVa Onevision](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [M4-Instruct](https://huggingface.co/datasets/lmms-lab/M4-Instruct-Data), [Mammoth](https://huggingface.co/datasets/MAmmoTH-VL/MAmmoTH-VL-Instruct-12M), [LlaVa Video 178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K), [FineVideo](https://huggingface.co/datasets/HuggingFaceFV/finevideo), [VideoStar](https://huggingface.co/datasets/orrzohar/Video-STaR), [VRipt](https://huggingface.co/datasets/Mutonix/Vript), [Vista-400K](https://huggingface.co/datasets/TIGER-Lab/VISTA-400K), [MovieChat](https://huggingface.co/datasets/Enxin/MovieChat-1K_train) and [ShareGPT4Video](https://huggingface.co/datasets/ShareGPT4Video/ShareGPT4Video).
In the following plots we give a general overview of the samples across modalities and the source of those samples.

<center><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolvlm2_data_split.png" width="auto" height="auto" alt="Image description">
</center>

### Details
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolvlm2_datadetails.png" width="auto" height="auto" alt="Image description">