eliebak HF staff commited on
Commit
2229821
·
verified ·
1 Parent(s): 501d302

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -193
README.md CHANGED
@@ -3,197 +3,134 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
 
6
 
7
+ # SmolLM
8
+
9
+
10
+ ## Table of Contents
11
+
12
+ 1. [Model Summary](##model-summary)
13
+ 2. [Use](##use)
14
+ 3. [Limitations](##limitations)
15
+ 4. [Training](##training)
16
+ 5. [License](##license)
17
+ 6. [Citation](##citation)
18
+
19
+ ## Model Summary
20
+
21
+ SmolLM-135M model is a 135M parameter model trained on TO COMPLETE
22
+
23
+ - **Languages:** English and Python code
24
+
25
+ ## Use
26
+
27
+ ### Intended use
28
+
29
+ The model was trained on [HuggingFaceTB/cosmo-corpus-v2](link)
30
+
31
+ ### Generation
32
+ First, make sure to install `transformers` from source:
33
+ ```bash
34
+ pip install git+https://github.com/huggingface/transformers.git
35
+ ```
36
+
37
+ #### Running the model on CPU/GPU/multi GPU
38
+ * _Using full precision_
39
+ ```python
40
+ # pip install git+https://github.com/huggingface/transformers.git # TODO: merge PR to main
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+ checkpoint = "HuggingFaceTB/SmolLM-135M"
43
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
44
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
45
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
46
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
47
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
48
+ outputs = model.generate(inputs)
49
+ print(tokenizer.decode(outputs[0]))
50
+ ```
51
+ ```bash
52
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
53
+ Memory footprint: 12624.81 MB
54
+ ```
55
+ * _Using `torch.bfloat16`_
56
+ ```python
57
+ # pip install accelerate
58
+ import torch
59
+ from transformers import AutoTokenizer, AutoModelForCausalLM
60
+ checkpoint = "HuggingFaceTB/SmolLM-135M"
61
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
62
+ # for fp16 use `torch_dtype=torch.float16` instead
63
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
64
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
65
+ outputs = model.generate(inputs)
66
+ print(tokenizer.decode(outputs[0]))
67
+ ```
68
+ ```bash
69
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
70
+ Memory footprint: 269.03 MB
71
+ ```
72
+
73
+ #### Quantized Versions through `bitsandbytes`
74
+ * _Using 8-bit precision (int8)_
75
+
76
+ ```python
77
+ # pip install bitsandbytes accelerate
78
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
79
+ # to use 4bit use `load_in_4bit=True` instead
80
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
81
+ checkpoint = "HuggingFaceTB/SmolLM-135M"
82
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
83
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config)
84
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
85
+ outputs = model.generate(inputs)
86
+ print(tokenizer.decode(outputs[0]))
87
+ ```
88
+ ```bash
89
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
90
+ # load_in_8bit
91
+ Memory footprint: 162.87 MB
92
+ # load_in_4bit
93
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
94
+ Memory footprint: 109.78 MB
95
+ ```
96
+ ### Attribution & Other Requirements
97
+
98
+ The pretraining dataset of the model was filtered for permissive licenses and code with no license only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/search-v2) that lets you search through the pretraining data to identify where the generated code came from, and apply the proper attribution to your code.
99
+
100
+ # Limitations
101
+
102
+ The model has been trained on source code from 600+ programming languages. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://huggingface.co/papers/2402.19173) for an in-depth discussion of the model limitations.
103
+
104
+ # Training
105
+
106
+ ## Model
107
+
108
+ - **Architecture:** Transformer decoder with grouped-query and sliding window attention and Fill-in-the-Middle objective
109
+ - **Pretraining steps:** 600k
110
+ - **Pretraining tokens:** 600B
111
+ - **Precision:** bfloat16
112
+
113
+ ## Hardware
114
+
115
+ - **GPUs:** 64 H100
116
+
117
+ ## Software
118
+
119
+ - **Training Framework:** [Nanotron](https://github.com/huggingface/nanotron/tree/main)
120
+
121
+ # License
122
+
123
+ TO MODIFY
124
+
125
+ # Citation
126
+ TO MODIFY
127
+ ```bash
128
+ @misc{lozhkov2024starcoder,
129
+ title={StarCoder 2 and The Stack v2: The Next Generation},
130
+ author={Anton Lozhkov and Raymond Li and Loubna Ben Allal and Federico Cassano and Joel Lamy-Poirier and Nouamane Tazi and Ao Tang and Dmytro Pykhtar and Jiawei Liu and Yuxiang Wei and Tianyang Liu and Max Tian and Denis Kocetkov and Arthur Zucker and Younes Belkada and Zijian Wang and Qian Liu and Dmitry Abulkhanov and Indraneil Paul and Zhuang Li and Wen-Ding Li and Megan Risdal and Jia Li and Jian Zhu and Terry Yue Zhuo and Evgenii Zheltonozhskii and Nii Osae Osae Dade and Wenhao Yu and Lucas Krauß and Naman Jain and Yixuan Su and Xuanli He and Manan Dey and Edoardo Abati and Yekun Chai and Niklas Muennighoff and Xiangru Tang and Muhtasham Oblokulov and Christopher Akiki and Marc Marone and Chenghao Mou and Mayank Mishra and Alex Gu and Binyuan Hui and Tri Dao and Armel Zebaze and Olivier Dehaene and Nicolas Patry and Canwen Xu and Julian McAuley and Han Hu and Torsten Scholak and Sebastien Paquet and Jennifer Robinson and Carolyn Jane Anderson and Nicolas Chapados and Mostofa Patwary and Nima Tajbakhsh and Yacine Jernite and Carlos Muñoz Ferrandis and Lingming Zhang and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
131
+ year={2024},
132
+ eprint={2402.19173},
133
+ archivePrefix={arXiv},
134
+ primaryClass={cs.SE}
135
+ }
136
+ ```