Commit
·
eeef13a
1
Parent(s):
972b33c
Update README.md
Browse files
README.md
CHANGED
@@ -206,17 +206,17 @@ The training software is built on top of HuggingFace Transformers + Accelerate,
|
|
206 |
|
207 |
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
208 |
As a derivative of such a language model, IDEFICS can produce texts that include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
209 |
-
Moreover, IDEFICS can produce factually incorrect texts
|
210 |
|
211 |
-
Here are a few examples of outputs that could be categorized as factually incorrect, biased, or offensive:
|
212 |
-
TODO: give 4/5 representative examples
|
213 |
|
214 |
When prompted with a misleading image, the model's generations offer factually incorrect information. For example, the prompt:
|
215 |
|
216 |
-
```"Who is the 46th President of the United States of America?" +
|
217 |
|
218 |
Returns: `The 46th President of the United States of America is Donald Trump.`.
|
219 |
|
|
|
220 |
|
221 |
|
222 |
## Bias Evaluation
|
|
|
206 |
|
207 |
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
208 |
As a derivative of such a language model, IDEFICS can produce texts that include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
209 |
+
Moreover, IDEFICS can produce factually incorrect texts and should not be relied on to produce factually accurate information.
|
210 |
|
211 |
+
Here are a few examples of outputs that could be categorized as factually incorrect, biased, or offensive:
|
|
|
212 |
|
213 |
When prompted with a misleading image, the model's generations offer factually incorrect information. For example, the prompt:
|
214 |
|
215 |
+
```"Who is the 46th President of the United States of America?" + an image of Donald Trump```
|
216 |
|
217 |
Returns: `The 46th President of the United States of America is Donald Trump.`.
|
218 |
|
219 |
+
The model will offer a response when prompted with medical images, for example, an X-ray, and asked for a diagnosis. This behaviour occurs both with specific prompts i.e. does this image show X disease and asked for a generic diagnosis i.e. what disease does this image show.
|
220 |
|
221 |
|
222 |
## Bias Evaluation
|