VictorSanh commited on
Commit
9da4b20
·
1 Parent(s): 8e32f98

git add image processing

Browse files
image_processing_img2html.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for Img2HTML."""
16
+
17
+ from typing import Callable, Dict, List, Optional, Union
18
+
19
+ from PIL import Image
20
+
21
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
22
+ from transformers.image_transforms import resize, to_channel_dimension_format
23
+ from transformers.image_utils import (
24
+ ChannelDimension,
25
+ ImageInput,
26
+ PILImageResampling,
27
+ make_list_of_images,
28
+ to_numpy_array,
29
+ valid_images,
30
+ )
31
+ from transformers.utils import TensorType, is_torch_available
32
+
33
+
34
+ IMG2HTML_STANDARD_MEAN = [0.5, 0.5, 0.5]
35
+ IMG2HTML_STANDARD_STD = [0.5, 0.5, 0.5]
36
+
37
+
38
+ def convert_to_rgb(image):
39
+ # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
40
+ # for transparent images. The call to `alpha_composite` handles this case
41
+ if image.mode == "RGB":
42
+ return image
43
+
44
+ image_rgba = image.convert("RGBA")
45
+ background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
46
+ alpha_composite = Image.alpha_composite(background, image_rgba)
47
+ alpha_composite = alpha_composite.convert("RGB")
48
+ return alpha_composite
49
+
50
+
51
+ class Img2HTMLImageProcessor(BaseImageProcessor):
52
+ r"""
53
+ Constructs a Img2HTML image processor.
54
+
55
+ Args:
56
+ image_size (`int`, *optional*, defaults to 224):
57
+ Resize to image size
58
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
59
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
60
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
61
+ overridden by the `image_mean` parameter in the `preprocess` method.
62
+ image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
63
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
64
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
65
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
66
+ image_num_channels (`int`, *optional*, defaults to 3):
67
+ Number of image channels.
68
+ """
69
+
70
+ model_input_names = ["pixel_values"]
71
+
72
+ def __init__(
73
+ self,
74
+ image_size: int = 224,
75
+ image_mean: Optional[Union[float, List[float]]] = None,
76
+ image_std: Optional[Union[float, List[float]]] = None,
77
+ image_num_channels: Optional[int] = 3,
78
+ **kwargs,
79
+ ) -> None:
80
+ super().__init__(**kwargs)
81
+
82
+ self.image_size = image_size
83
+ self.image_num_channels = image_num_channels
84
+ self.image_mean = image_mean
85
+ self.image_std = image_std
86
+
87
+ def preprocess(
88
+ self,
89
+ images: ImageInput,
90
+ image_num_channels: Optional[int] = 3,
91
+ image_size: Optional[Dict[str, int]] = None,
92
+ image_mean: Optional[Union[float, List[float]]] = None,
93
+ image_std: Optional[Union[float, List[float]]] = None,
94
+ transform: Callable = None,
95
+ **kwargs,
96
+ ) -> TensorType.PYTORCH:
97
+ """
98
+ Preprocess a batch of images.
99
+
100
+ Args:
101
+ images (`ImageInput`):
102
+ A list of images to preprocess.
103
+ image_size (`int`, *optional*, defaults to `self.image_size`):
104
+ Resize to image size
105
+ image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`):
106
+ Number of image channels.
107
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
108
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
109
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can
110
+ be overridden by the `image_mean` parameter in the `preprocess` method.
111
+ image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
112
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
113
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess`
114
+ method. Can be overridden by the `image_std` parameter in the `preprocess` method.
115
+ transform (`Callable`, *optional*, defaults to `None`):
116
+ A custom transform function that accepts a single image can be passed for training. For example,
117
+ `torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is
118
+ assumed - and then a preset of inference-specific transforms will be applied to the images
119
+
120
+ Returns:
121
+ a PyTorch tensor of the processed images
122
+
123
+ """
124
+ image_size = image_size if image_size is not None else self.image_size
125
+ image_num_channels = image_num_channels if image_num_channels is not None else self.image_num_channels
126
+ image_mean = image_mean if image_mean is not None else self.image_mean
127
+ image_std = image_std if image_std is not None else self.image_std
128
+ size = (image_size, image_size)
129
+
130
+ if isinstance(images, list) and len(images) == 0:
131
+ return []
132
+
133
+ images = make_list_of_images(images)
134
+
135
+ if not valid_images(images):
136
+ raise ValueError(
137
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
138
+ "torch.Tensor, tf.Tensor or jax.ndarray."
139
+ )
140
+
141
+ # For training a user needs to pass their own set of transforms as a Callable.
142
+ # For reference this is what was used in the original IDEFICS training:
143
+ # transform = transforms.Compose([
144
+ # convert_to_rgb,
145
+ # transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BILINEAR),
146
+ # transforms.ToTensor(),
147
+ # transforms.Normalize(mean=image_mean, std=image_std),
148
+ # ])
149
+ if transform is not None:
150
+ if not is_torch_available():
151
+ raise ImportError("To pass in `transform` torch must be installed")
152
+ import torch
153
+
154
+ images = [transform(x) for x in images]
155
+ return torch.stack(images)
156
+
157
+ # for inference we do the exact transforms that were used to train IDEFICS
158
+ images = [convert_to_rgb(x) for x in images]
159
+ # further transforms expect numpy arrays
160
+ images = [to_numpy_array(x) for x in images]
161
+ images = [resize(x, size, resample=PILImageResampling.BILINEAR) for x in images]
162
+ images = [self.rescale(image=image, scale=1 / 255) for image in images]
163
+ images = [self.normalize(x, mean=image_mean, std=image_std) for x in images]
164
+ images = [to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images]
165
+ # TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available
166
+ images = BatchFeature(data={"pixel_values": images}, tensor_type=TensorType.PYTORCH)["pixel_values"]
167
+
168
+ return images
preprocessor_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_num_channels": 3,
3
+ "image_mean": [
4
+ 0.5,
5
+ 0.5,
6
+ 0.5
7
+ ],
8
+ "image_processor_type": "Img2HTMLImageProcessor",
9
+ "image_size": 960,
10
+ "image_std": [
11
+ 0.5,
12
+ 0.5,
13
+ 0.5
14
+ ],
15
+ "processor_class": "Img2HTMLProcessor"
16
+ }
processing_img2html.py ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for Img2HTML.
17
+ """
18
+
19
+ from typing import Callable, List, Optional, Union
20
+ from urllib.parse import urlparse
21
+
22
+ from transformers.feature_extraction_utils import BatchFeature
23
+ from transformers.processing_utils import ProcessorMixin
24
+ from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, TextInput, TruncationStrategy
25
+ from transformers.utils import TensorType, is_torch_available
26
+
27
+
28
+ if is_torch_available():
29
+ import torch
30
+
31
+
32
+ IMAGE_TOKEN = "<image>"
33
+
34
+
35
+ # copied from m4.training.packing
36
+ def incremental_to_binary_attention_mask(incremental_mask, num_classes=-1):
37
+ # This function converts: [-1, 0, 1] => [[0, 0], [1, 0], [0, 1]]
38
+
39
+ # If any of images index are more than num_classes, set them to -1.
40
+ # Words after the max number of images allowed have been seen don't attend on anything
41
+ if num_classes != -1:
42
+ incremental_mask[incremental_mask >= num_classes] = -1
43
+
44
+ negatives = incremental_mask == -1
45
+ incremental_mask[negatives] = 0
46
+ attn_mask = torch.nn.functional.one_hot(incremental_mask, num_classes=num_classes)
47
+ attn_mask[negatives, :] = 0
48
+ return attn_mask
49
+
50
+
51
+ # copied from m4.training.packing
52
+ def image_attention_mask_for_packed_input_ids(input_ids, tokenizer):
53
+ image_attention_mask = torch.full_like(input_ids, fill_value=-1)
54
+ next_image_attention_mask = torch.full_like(input_ids, fill_value=-1)
55
+ image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
56
+ eod_token_id = tokenizer.eos_token_id
57
+ for batch_idx in range(input_ids.size(0)):
58
+ count = -1
59
+ seen_eod = False
60
+ for idx, token_id in enumerate(input_ids[batch_idx]):
61
+ if token_id == image_token_id:
62
+ count += 1
63
+ image_attention_mask[batch_idx][idx] = count
64
+ seen_eod = False
65
+ else:
66
+ image_attention_mask[batch_idx][idx] = count
67
+
68
+ if seen_eod:
69
+ image_attention_mask[batch_idx][idx] = -1
70
+
71
+ if token_id == eod_token_id:
72
+ seen_eod = True
73
+
74
+ for batch_idx in range(input_ids.size(0)):
75
+ count = -1
76
+ seen_eod = False
77
+ for idx in range(input_ids[batch_idx].size(0) - 1, -1, -1):
78
+ token_id = input_ids[batch_idx][idx]
79
+ if token_id == image_token_id:
80
+ count += 1
81
+ next_image_attention_mask[batch_idx][idx] = count
82
+ seen_eod = False
83
+ else:
84
+ next_image_attention_mask[batch_idx][idx] = count
85
+
86
+ if token_id == eod_token_id:
87
+ seen_eod = True
88
+
89
+ if seen_eod:
90
+ next_image_attention_mask[batch_idx][idx] = -1
91
+
92
+ non_negative_indices = next_image_attention_mask[batch_idx] != -1
93
+ next_image_attention_mask[batch_idx][non_negative_indices] -= count
94
+ next_image_attention_mask[batch_idx][non_negative_indices] *= -1
95
+
96
+ return image_attention_mask, next_image_attention_mask
97
+
98
+
99
+ def is_url(string):
100
+ """Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
101
+ invalidated the url"""
102
+ if " " in string:
103
+ return False
104
+ result = urlparse(string)
105
+ return all([result.scheme, result.netloc])
106
+
107
+
108
+ class Img2HTMLProcessor(ProcessorMixin):
109
+ r"""
110
+ Constructs a Img2HTML processor which wraps a LLama tokenizer and Img2HTML image processor into a single processor.
111
+
112
+ [`Img2HTMLProcessor`] offers all the functionalities of [`Img2HTMLImageProcessor`] and [`LlamaTokenizerFast`]. See
113
+ the docstring of [`~Img2HTMLProcessor.__call__`] and [`~Img2HTMLProcessor.decode`] for more information.
114
+
115
+ Args:
116
+ image_processor (`Img2HTMLImageProcessor`):
117
+ An instance of [`Img2HTMLImageProcessor`]. The image processor is a required input.
118
+ tokenizer (`LlamaTokenizerFast`):
119
+ An instance of [`LlamaTokenizerFast`]. The tokenizer is a required input.
120
+ image_size (`int`, *optional*, defaults to 224): Image size (assuming a square image)
121
+ """
122
+
123
+ attributes = ["image_processor", "tokenizer"]
124
+ image_processor_class = "Img2HTMLImageProcessor"
125
+ tokenizer_class = "LlamaTokenizerFast"
126
+
127
+ def __init__(self, image_processor, tokenizer=None, image_size=224, add_end_of_utterance_token=None, **kwargs):
128
+ if image_processor is None:
129
+ raise ValueError("You need to specify an `image_processor`.")
130
+ if tokenizer is None:
131
+ raise ValueError("You need to specify a `tokenizer`.")
132
+
133
+ super().__init__(image_processor, tokenizer)
134
+ self.current_processor = self.image_processor
135
+ self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
136
+
137
+ self.default_image_dims = (
138
+ self.image_processor.image_num_channels,
139
+ self.image_processor.image_size,
140
+ self.image_processor.image_size,
141
+ )
142
+
143
+ self.tokenizer_was_trained_with_end_of_utterance_token = (
144
+ True
145
+ if "<end_of_utterance>" in self.tokenizer.special_tokens_map.get("additional_special_tokens", [])
146
+ else False
147
+ )
148
+
149
+ def __call__(
150
+ self,
151
+ prompts: Union[List[TextInput], List[List[TextInput]]],
152
+ padding: Union[bool, str, PaddingStrategy] = False,
153
+ truncation: Union[bool, str, TruncationStrategy] = None,
154
+ max_length: Optional[int] = None,
155
+ transform: Callable = None,
156
+ add_eos_token=False,
157
+ add_end_of_utterance_token=None,
158
+ debug=False,
159
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
160
+ ) -> BatchEncoding:
161
+ """This method takes batched or non-batched prompts made of text and images and converts them into prompts that
162
+ the model was trained on and prepares the image pixel values for the model to process.
163
+
164
+ Args:
165
+ prompts (`Union[List[TextInput], [List[List[TextInput]]]]`):
166
+ either a single prompt or a batched list of prompts - see the detailed description immediately after
167
+ the end of the arguments doc section.
168
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
169
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
170
+ index) among:
171
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
172
+ sequence if provided).
173
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
174
+ acceptable input length for the model if that argument is not provided.
175
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
176
+ lengths).
177
+ max_length (`int`, *optional*):
178
+ Maximum length of the returned list and optionally padding length (see above).
179
+ truncation (`bool`, *optional*):
180
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
181
+ transform (`Callable`, *optional*):
182
+ A custom transform function that accepts a single image can be passed for training. For example,
183
+ `torchvision.Compose` can be used to compose multiple functions. If `None` a preset inference-specific
184
+ set of transforms will be applied to the images
185
+ add_eos_token (`bool`, *optional*, defaults to `False`):
186
+ Adds `eos_token` at the end of the final prompt if True`
187
+ add_end_of_utterance_token (`bool`, *optional*)
188
+ Whether to automatically add `<end_of_utterance>` after each prompt's text input (unless followed by an
189
+ image). If `None` the tokenizer will be checked instead and if this token is found in
190
+ `additional_special_tokens` then the value will be `True`.
191
+ debug (`bool`, *optional*, defaults to `False`):
192
+ `True` value will help debug prompt generation by dumping useful information
193
+ return_tensors (`str` or `TensorType`, *optional*, defaults to `TensorType.PYTORCH`):
194
+ The type of tensors to return. Can be one of:
195
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
196
+
197
+ Returns:
198
+ a dict with entries: `input_ids`, `attention_mask`, `pixel_values`, `image_attention_mask` which can be
199
+ directly passed to `model.generate`
200
+
201
+ Detailed explanation:
202
+
203
+ Each entry in `prompts` is either a text to be passed as is or an image that will be processed.
204
+
205
+ An image can be either an image object (`PIL.Image`) or a url from which the image can be retrieved.
206
+
207
+ When the processor encounters an image it'll inject `<fake_token_around_image><image><fake_token_around_image>`
208
+ entry into the prompt.
209
+
210
+ Example:
211
+
212
+ ```python
213
+ checkpoint = "HuggingFaceM4/Img2HTML-9b"
214
+ processor = AutoProcessor.from_pretrained(checkpoint)
215
+ url = "https://hips.hearstapps.com/hmg-prod/images/cute-photos-of-cats-in-grass-1593184777.jpg"
216
+ img = processor.image_processor.fetch_images([url])[0]
217
+
218
+ prompts = [
219
+ "User:",
220
+ img,
221
+ "Describe this image.\nAssistant: An image of two kittens in grass.\n",
222
+ "User:",
223
+ "https://hips.hearstapps.com/hmg-prod/images/dog-puns-1581708208.jpg",
224
+ "Describe this image.\nAssistant:",
225
+ ]
226
+
227
+ inputs = processor(prompts, return_tensors="pt")
228
+ generated_ids = model.generate(**inputs, max_length=100)
229
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
230
+ ```
231
+
232
+ In this example the `prompts` will be converted into:
233
+
234
+ ```
235
+ <s>User:<fake_token_around_image><image><fake_token_around_image>Describe this image.
236
+ Assistant: An image of two kittens in grass.
237
+ User:<fake_token_around_image><image><fake_token_around_image>Describe this image.
238
+ Assistant:'
239
+ ```
240
+
241
+ and the two images will be massaged using [`Img2HTMLImageProcessor.__call__`] method and placed inside the
242
+ `pixel_values` dict entry of the return value.
243
+
244
+ This example also examplifies that images can be passed as objects or as text urls. It can be seen that the
245
+ first image is passed as object and the second one as a url.
246
+
247
+ To do training do:
248
+
249
+ ```python
250
+ image_transform = transforms.Compose(
251
+ [
252
+ transforms.RandomResizedCrop(
253
+ (w, h), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC
254
+ ),
255
+ transforms.ToTensor(),
256
+ transforms.Normalize(mean=self.image_mean, std=self.image_std),
257
+ ]
258
+ )
259
+ inputs = processor(prompts, transform=image_transform, return_tensors="pt")
260
+ ```
261
+
262
+ In order to help debug prompt generation enable `debug=True` which will show you what's happening.
263
+
264
+ """
265
+
266
+ # if the value isn't overriden by the user, check if the tokenizer was trained with this token and then use it
267
+ if add_end_of_utterance_token is None:
268
+ add_end_of_utterance_token = self.tokenizer_was_trained_with_end_of_utterance_token
269
+
270
+ # turn non-batched prompts into batched
271
+ if not any(isinstance(i, list) for i in prompts):
272
+ prompts = [prompts]
273
+
274
+ fake_token = "<fake_token_around_image>"
275
+ image_token = "<image>"
276
+ end_of_utterance_token = "<end_of_utterance>"
277
+
278
+ def image_tokens(last_was_image):
279
+ if last_was_image:
280
+ return image_token + fake_token
281
+ else:
282
+ return fake_token + image_token + fake_token
283
+
284
+ all_prompts = []
285
+ all_images = []
286
+ for sample in prompts:
287
+ # the model was trained on samples starting with <s>
288
+ full_text = f"{self.tokenizer.bos_token}"
289
+
290
+ # an image can either be an image object in the item or the url, everything else is a verbatim prompt text
291
+ image_objects = []
292
+ last_was_image = False
293
+ last_was_text = False
294
+ for i, item in enumerate(sample):
295
+ if i > 0:
296
+ last_was_text = True if not last_was_image else False
297
+
298
+ if isinstance(item, str):
299
+ item = item.strip(" ")
300
+ if is_url(item):
301
+ image = self.image_processor.fetch_images(item)
302
+ full_text += image_tokens(last_was_image)
303
+ image_objects.append(image)
304
+ last_was_image = True
305
+ else:
306
+ # we add end_of_utterance_token between each subsequent text prompts (but not at the last one!)
307
+ if add_end_of_utterance_token and last_was_text:
308
+ full_text += end_of_utterance_token
309
+ full_text += item
310
+ last_was_image = False
311
+ else:
312
+ # must be an image obj
313
+ full_text += image_tokens(last_was_image)
314
+ image_objects.append(item)
315
+ last_was_image = True
316
+
317
+ if add_eos_token:
318
+ full_text += self.tokenizer.eos_token
319
+
320
+ if debug is True:
321
+ print(f"{full_text=}")
322
+
323
+ image_objects = self.image_processor(image_objects, transform=transform)
324
+
325
+ all_prompts.append(full_text)
326
+ all_images.append(image_objects)
327
+
328
+ text_encoding = self.tokenizer(
329
+ text=all_prompts,
330
+ add_special_tokens=False,
331
+ padding=padding,
332
+ truncation=truncation,
333
+ max_length=max_length,
334
+ )
335
+ all_texts = text_encoding["input_ids"]
336
+
337
+ max_seq_len = max(len(x) for x in all_texts)
338
+
339
+ # max_num_images has to be at least 1 even when there are no images
340
+ max_num_images = max(len(x) for x in all_images)
341
+ max_num_images = max(1, max_num_images)
342
+
343
+ output_input_ids = []
344
+ output_images = []
345
+ output_attention_masks = []
346
+ for text, images in zip(all_texts, all_images):
347
+ padded_input_ids = [self.tokenizer.pad_token_id] * max_seq_len
348
+ unpadded_seq_len = len(text)
349
+ start = max_seq_len - unpadded_seq_len
350
+ padded_input_ids[start:] = text[:max_seq_len]
351
+
352
+ attention_mask = torch.zeros((max_seq_len,), dtype=torch.long)
353
+ attention_mask[start:] = 1
354
+
355
+ image_count = padded_input_ids.count(self.image_token_id)
356
+ local_max_num_images = min(image_count, max_num_images)
357
+
358
+ current_images = images[:local_max_num_images]
359
+
360
+ if len(current_images) > 0:
361
+ padded_image_tensor = torch.zeros(max_num_images, *current_images.size()[1:])
362
+ padded_image_tensor[: current_images.size(0)] = current_images
363
+ else:
364
+ padded_image_tensor = torch.zeros(max_num_images, *self.default_image_dims)
365
+
366
+ output_images.append(padded_image_tensor)
367
+ output_input_ids.append(torch.tensor(padded_input_ids))
368
+
369
+ output_attention_masks.append(attention_mask)
370
+
371
+ output_input_ids = torch.stack(output_input_ids)
372
+ output_images = torch.stack(output_images)
373
+ output_attention_masks = torch.stack(output_attention_masks)
374
+
375
+
376
+ return BatchFeature(
377
+ data={
378
+ "input_ids": output_input_ids,
379
+ "attention_mask": output_attention_masks,
380
+ "pixel_values": output_images,
381
+ }
382
+ )
383
+
384
+ def batch_decode(self, *args, **kwargs):
385
+ """
386
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
387
+ refer to the docstring of this method for more information.
388
+ """
389
+ return self.tokenizer.batch_decode(*args, **kwargs)
390
+
391
+ def decode(self, *args, **kwargs):
392
+ """
393
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
394
+ the docstring of this method for more information.
395
+ """
396
+ return self.tokenizer.decode(*args, **kwargs)
397
+
398
+ @property
399
+ def model_input_names(self):
400
+ tokenizer_input_names = self.tokenizer.model_input_names
401
+ image_processor_input_names = self.image_processor.model_input_names
402
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))