# coding=utf-8 | |
# Copyright 2023 Google AI and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" A simplified copy of https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2 """ | |
from dataclasses import dataclass | |
from typing import Any, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_img2html import Img2HTMLVisionConfig | |
logger = logging.get_logger(__name__) | |
# _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" | |
# SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
# "google/siglip-base-patch16-224", | |
# # See all SigLIP models at https://huggingface.co/models?filter=siglip | |
# ] | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# # Copied from transformers.models.bart.modeling_bart._expand_mask | |
# def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
# """ | |
# Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
# """ | |
# bsz, src_len = mask.size() | |
# tgt_len = tgt_len if tgt_len is not None else src_len | |
# expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
# inverted_mask = 1.0 - expanded_mask | |
# return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
# # contrastive loss function, adapted from | |
# # https://sachinruk.github.io/blog/2021-03-07-siglip.html | |
# def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: | |
# return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) | |
# # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->siglip | |
# def siglip_loss(similarity: torch.Tensor) -> torch.Tensor: | |
# caption_loss = contrastive_loss(similarity) | |
# image_loss = contrastive_loss(similarity.t()) | |
# return (caption_loss + image_loss) / 2.0 | |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip | |
class SiglipVisionModelOutput(ModelOutput): | |
""" | |
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. | |
Args: | |
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
The image embeddings obtained by applying the projection layer to the pooler_output. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
image_embeds: Optional[torch.FloatTensor] = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
# @dataclass | |
# # Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip | |
# class SiglipTextModelOutput(ModelOutput): | |
# """ | |
# Base class for text model's outputs that also contains a pooling of the last hidden states. | |
# Args: | |
# text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
# The text embeddings obtained by applying the projection layer to the pooler_output. | |
# last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
# Sequence of hidden-states at the output of the last layer of the model. | |
# hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
# Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
# one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
# Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
# attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
# Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
# sequence_length)`. | |
# Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
# heads. | |
# """ | |
# text_embeds: Optional[torch.FloatTensor] = None | |
# last_hidden_state: torch.FloatTensor = None | |
# hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
# attentions: Optional[Tuple[torch.FloatTensor]] = None | |
# @dataclass | |
# # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip | |
# class SiglipOutput(ModelOutput): | |
# """ | |
# Args: | |
# loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
# Contrastive loss for image-text similarity. | |
# logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): | |
# The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text | |
# similarity scores. | |
# logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): | |
# The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image | |
# similarity scores. | |
# text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
# The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. | |
# image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
# The image embeddings obtained by applying the projection layer to the pooled output of | |
# [`SiglipVisionModel`]. | |
# text_model_output(`BaseModelOutputWithPooling`): | |
# The output of the [`SiglipTextModel`]. | |
# vision_model_output(`BaseModelOutputWithPooling`): | |
# The output of the [`SiglipVisionModel`]. | |
# """ | |
# loss: Optional[torch.FloatTensor] = None | |
# logits_per_image: torch.FloatTensor = None | |
# logits_per_text: torch.FloatTensor = None | |
# text_embeds: torch.FloatTensor = None | |
# image_embeds: torch.FloatTensor = None | |
# text_model_output: BaseModelOutputWithPooling = None | |
# vision_model_output: BaseModelOutputWithPooling = None | |
# def to_tuple(self) -> Tuple[Any]: | |
# return tuple( | |
# self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() | |
# for k in self.keys() | |
# ) | |
class SiglipVisionEmbeddings(nn.Module): | |
def __init__(self, config: Img2HTMLVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
padding="valid", | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] | |
embeddings = patch_embeds.flatten(2).transpose(1, 2) | |
embeddings = embeddings + self.position_embedding(self.position_ids) | |
return embeddings | |
# # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip | |
# class SiglipTextEmbeddings(nn.Module): | |
# def __init__(self, config: SiglipTextConfig): | |
# super().__init__() | |
# embed_dim = config.hidden_size | |
# self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) | |
# self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) | |
# # position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
# self.register_buffer( | |
# "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
# ) | |
# def forward( | |
# self, | |
# input_ids: Optional[torch.LongTensor] = None, | |
# position_ids: Optional[torch.LongTensor] = None, | |
# inputs_embeds: Optional[torch.FloatTensor] = None, | |
# ) -> torch.Tensor: | |
# seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] | |
# if position_ids is None: | |
# position_ids = self.position_ids[:, :seq_length] | |
# if inputs_embeds is None: | |
# inputs_embeds = self.token_embedding(input_ids) | |
# position_embeddings = self.position_embedding(position_ids) | |
# embeddings = inputs_embeds + position_embeddings | |
# return embeddings | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip | |
class SiglipAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
bsz, tgt_len, embed_dim = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scale | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
# apply the causal_attention_mask first | |
if causal_attention_mask is not None: | |
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" | |
f" {causal_attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if output_attentions: | |
# this operation is a bit akward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped | |
class SiglipFlashAttention2(SiglipAttention): | |
""" | |
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.is_causal = False # Hack to make sure we don't use a causal mask | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
# if past_key_value is not None: | |
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.dropout if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
"The input hidden states seems to be silently casted in float32, this might be related to the fact" | |
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = self._flash_attention_forward( | |
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous() | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights | |
def _flash_attention_forward( | |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`int`, *optional*): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
attn_output = flash_attn_func( | |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
) | |
return attn_output | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip | |
class SiglipMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip | |
class SiglipEncoderLayer(nn.Module): | |
def __init__(self, config: Img2HTMLVisionConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = ( | |
SiglipAttention(config) | |
if not getattr(config, "_flash_attn_2_enabled", False) | |
else SiglipFlashAttention2(config) | |
) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = SiglipMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
causal_attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
`(config.encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
# class SiglipPreTrainedModel(PreTrainedModel): | |
# """ | |
# An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
# models. | |
# """ | |
# config_class = SiglipConfig | |
# base_model_prefix = "siglip" | |
# supports_gradient_checkpointing = True | |
# def _init_weights(self, module): | |
# """Initialize the weights""" | |
# factor = self.config.initializer_factor | |
# if isinstance(module, SiglipVisionEmbeddings): | |
# factor = self.config.initializer_factor | |
# nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) | |
# nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) | |
# elif isinstance(module, SiglipAttention): | |
# factor = self.config.initializer_factor | |
# in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
# out_proj_std = (module.embed_dim**-0.5) * factor | |
# nn.init.normal_(module.q_proj.weight, std=in_proj_std) | |
# nn.init.normal_(module.k_proj.weight, std=in_proj_std) | |
# nn.init.normal_(module.v_proj.weight, std=in_proj_std) | |
# nn.init.normal_(module.out_proj.weight, std=out_proj_std) | |
# elif isinstance(module, SiglipMLP): | |
# factor = self.config.initializer_factor | |
# in_proj_std = ( | |
# (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
# ) | |
# fc_std = (2 * module.config.hidden_size) ** -0.5 * factor | |
# nn.init.normal_(module.fc1.weight, std=fc_std) | |
# nn.init.normal_(module.fc2.weight, std=in_proj_std) | |
# if isinstance(module, nn.LayerNorm): | |
# module.bias.data.zero_() | |
# module.weight.data.fill_(1.0) | |
# if isinstance(module, nn.Linear) and module.bias is not None: | |
# module.bias.data.zero_() | |
# def _set_gradient_checkpointing(self, module, value=False): | |
# if isinstance(module, SiglipEncoder): | |
# module.gradient_checkpointing = value | |
# SIGLIP_START_DOCSTRING = r""" | |
# This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
# library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
# etc.) | |
# This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
# Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
# and behavior. | |
# Parameters: | |
# config ([`SiglipConfig`]): Model configuration class with all the parameters of the model. | |
# Initializing with a config file does not load the weights associated with the model, only the | |
# configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
# """ | |
# SIGLIP_TEXT_INPUTS_DOCSTRING = r""" | |
# Args: | |
# input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
# Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
# it. | |
# Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
# [`PreTrainedTokenizer.__call__`] for details. | |
# [What are input IDs?](../glossary#input-ids) | |
# attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
# Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
# - 1 for tokens that are **not masked**, | |
# - 0 for tokens that are **masked**. | |
# [What are attention masks?](../glossary#attention-mask) | |
# position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
# Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
# config.max_position_embeddings - 1]`. | |
# [What are position IDs?](../glossary#position-ids) | |
# output_attentions (`bool`, *optional*): | |
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
# tensors for more detail. | |
# output_hidden_states (`bool`, *optional*): | |
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
# more detail. | |
# return_dict (`bool`, *optional*): | |
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
# """ | |
# SIGLIP_VISION_INPUTS_DOCSTRING = r""" | |
# Args: | |
# pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
# Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
# [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
# output_attentions (`bool`, *optional*): | |
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
# tensors for more detail. | |
# output_hidden_states (`bool`, *optional*): | |
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
# more detail. | |
# return_dict (`bool`, *optional*): | |
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
# """ | |
# SIGLIP_INPUTS_DOCSTRING = r""" | |
# Args: | |
# input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
# Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
# it. | |
# Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
# [`PreTrainedTokenizer.__call__`] for details. | |
# [What are input IDs?](../glossary#input-ids) | |
# attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
# Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
# - 1 for tokens that are **not masked**, | |
# - 0 for tokens that are **masked**. | |
# [What are attention masks?](../glossary#attention-mask) | |
# position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
# Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
# config.max_position_embeddings - 1]`. | |
# [What are position IDs?](../glossary#position-ids) | |
# pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
# Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
# [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
# return_loss (`bool`, *optional*): | |
# Whether or not to return the contrastive loss. | |
# output_attentions (`bool`, *optional*): | |
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
# tensors for more detail. | |
# output_hidden_states (`bool`, *optional*): | |
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
# more detail. | |
# return_dict (`bool`, *optional*): | |
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
# """ | |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip | |
class SiglipEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`SiglipEncoderLayer`]. | |
Args: | |
config: SiglipConfig | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Causal mask for the text model. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(encoder_layer), | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
# class SiglipTextTransformer(nn.Module): | |
# def __init__(self, config: SiglipTextConfig): | |
# super().__init__() | |
# self.config = config | |
# embed_dim = config.hidden_size | |
# self.embeddings = SiglipTextEmbeddings(config) | |
# self.encoder = SiglipEncoder(config) | |
# self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
# self.head = nn.Linear(embed_dim, embed_dim) | |
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) | |
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) | |
# def forward( | |
# self, | |
# input_ids: Optional[torch.Tensor] = None, | |
# attention_mask: Optional[torch.Tensor] = None, | |
# position_ids: Optional[torch.Tensor] = None, | |
# output_attentions: Optional[bool] = None, | |
# output_hidden_states: Optional[bool] = None, | |
# return_dict: Optional[bool] = None, | |
# ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
# r""" | |
# Returns: | |
# """ | |
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
# output_hidden_states = ( | |
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
# ) | |
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# if input_ids is None: | |
# raise ValueError("You have to specify input_ids") | |
# input_shape = input_ids.size() | |
# input_ids = input_ids.view(-1, input_shape[-1]) | |
# hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) | |
# # note: SigLIP's text model does not use q causal mask, unlike the original CLIP model. | |
# # expand attention_mask | |
# if attention_mask is not None: | |
# # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
# attention_mask = _expand_mask(attention_mask, hidden_states.dtype) | |
# encoder_outputs = self.encoder( | |
# inputs_embeds=hidden_states, | |
# attention_mask=None, | |
# causal_attention_mask=None, | |
# output_attentions=output_attentions, | |
# output_hidden_states=output_hidden_states, | |
# return_dict=return_dict, | |
# ) | |
# last_hidden_state = encoder_outputs[0] | |
# last_hidden_state = self.final_layer_norm(last_hidden_state) | |
# # Assuming "sticky" EOS tokenization, last token is always EOS. | |
# pooled_output = last_hidden_state[:, -1, :] | |
# pooled_output = self.head(pooled_output) | |
# if not return_dict: | |
# return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
# return BaseModelOutputWithPooling( | |
# last_hidden_state=last_hidden_state, | |
# pooler_output=pooled_output, | |
# hidden_states=encoder_outputs.hidden_states, | |
# attentions=encoder_outputs.attentions, | |
# ) | |
# @add_start_docstrings( | |
# """The text model from SigLIP without any head or projection on top.""", | |
# SIGLIP_START_DOCSTRING, | |
# ) | |
# class SiglipTextModel(SiglipPreTrainedModel): | |
# config_class = SiglipTextConfig | |
# _no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"] | |
# def __init__(self, config: SiglipTextConfig): | |
# super().__init__(config) | |
# self.text_model = SiglipTextTransformer(config) | |
# # Initialize weights and apply final processing | |
# self.post_init() | |
# def get_input_embeddings(self) -> nn.Module: | |
# return self.text_model.embeddings.token_embedding | |
# def set_input_embeddings(self, value): | |
# self.text_model.embeddings.token_embedding = value | |
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) | |
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) | |
# def forward( | |
# self, | |
# input_ids: Optional[torch.Tensor] = None, | |
# attention_mask: Optional[torch.Tensor] = None, | |
# position_ids: Optional[torch.Tensor] = None, | |
# output_attentions: Optional[bool] = None, | |
# output_hidden_states: Optional[bool] = None, | |
# return_dict: Optional[bool] = None, | |
# ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
# r""" | |
# Returns: | |
# Examples: | |
# ```python | |
# >>> from transformers import AutoTokenizer, SiglipTextModel | |
# >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224") | |
# >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") | |
# >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
# >>> outputs = model(**inputs) | |
# >>> last_hidden_state = outputs.last_hidden_state | |
# >>> pooled_output = outputs.pooler_output # pooled (EOS token) states | |
# ```""" | |
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# return self.text_model( | |
# input_ids=input_ids, | |
# attention_mask=attention_mask, | |
# position_ids=position_ids, | |
# output_attentions=output_attentions, | |
# output_hidden_states=output_hidden_states, | |
# return_dict=return_dict, | |
# ) | |
class SiglipVisionTransformer(nn.Module): | |
def __init__(self, config: Img2HTMLVisionConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = SiglipVisionEmbeddings(config) | |
self.encoder = SiglipEncoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.head = SiglipMultiheadAttentionPoolingHead(config) | |
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) | |
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Img2HTMLVisionConfig) | |
def forward( | |
self, | |
pixel_values, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
hidden_states = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.post_layernorm(last_hidden_state) | |
pooled_output = self.head(last_hidden_state) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class SiglipMultiheadAttentionPoolingHead(nn.Module): | |
"""Multihead Attention Pooling.""" | |
def __init__(self, config: Img2HTMLVisionConfig): | |
super().__init__() | |
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) | |
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.mlp = SiglipMLP(config) | |
def forward(self, hidden_state): | |
batch_size = hidden_state.shape[0] | |
probe = self.probe.repeat(batch_size, 1, 1) | |
hidden_state = self.attention(probe, hidden_state, hidden_state)[0] | |
residual = hidden_state | |
hidden_state = self.layernorm(hidden_state) | |
hidden_state = residual + self.mlp(hidden_state) | |
return hidden_state[:, 0] | |
# @add_start_docstrings( | |
# """The vision model from SigLIP without any head or projection on top.""", | |
# SIGLIP_START_DOCSTRING, | |
# ) | |
class SiglipVisionModel(nn.Module): | |
def __init__(self, config: Img2HTMLVisionConfig): | |
super().__init__() | |
self.vision_model = SiglipVisionTransformer(config) | |
# # Initialize weights and apply final processing | |
# self.post_init() | |
# def get_input_embeddings(self) -> nn.Module: | |
# return self.vision_model.embeddings.patch_embedding | |
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) | |
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Img2HTMLVisionConfig) | |
def forward( | |
self, | |
pixel_values, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
# r""" | |
# Returns: | |
# Examples: | |
# ```python | |
# >>> from PIL import Image | |
# >>> import requests | |
# >>> from transformers import AutoProcessor, SiglipVisionModel | |
# >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") | |
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
# >>> image = Image.open(requests.get(url, stream=True).raw) | |
# >>> inputs = processor(images=image, return_tensors="pt") | |
# >>> outputs = model(**inputs) | |
# >>> last_hidden_state = outputs.last_hidden_state | |
# >>> pooled_output = outputs.pooler_output # pooled CLS states | |
# ```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
return self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# @add_start_docstrings(SIGLIP_START_DOCSTRING) | |
# class SiglipModel(SiglipPreTrainedModel): | |
# config_class = SiglipConfig | |
# def __init__(self, config: SiglipConfig): | |
# super().__init__(config) | |
# if not isinstance(config.text_config, SiglipTextConfig): | |
# raise ValueError( | |
# "config.text_config is expected to be of type SiglipTextConfig but is of type" | |
# f" {type(config.text_config)}." | |
# ) | |
# if not isinstance(config.vision_config, SiglipVisionConfig): | |
# raise ValueError( | |
# "config.vision_config is expected to be of type SiglipVisionConfig but is of type" | |
# f" {type(config.vision_config)}." | |
# ) | |
# text_config = config.text_config | |
# vision_config = config.vision_config | |
# self.text_model = SiglipTextModel(text_config) | |
# self.vision_model = SiglipVisionModel(vision_config) | |
# self.temperature = nn.Parameter( | |
# torch.randn( | |
# 1, | |
# ) | |
# ) | |
# self.bias = nn.Parameter( | |
# torch.randn( | |
# 1, | |
# ) | |
# ) | |
# # Initialize weights and apply final processing | |
# self.post_init() | |
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) | |
# def get_text_features( | |
# self, | |
# input_ids: Optional[torch.Tensor] = None, | |
# attention_mask: Optional[torch.Tensor] = None, | |
# position_ids: Optional[torch.Tensor] = None, | |
# output_attentions: Optional[bool] = None, | |
# output_hidden_states: Optional[bool] = None, | |
# return_dict: Optional[bool] = None, | |
# ) -> torch.FloatTensor: | |
# r""" | |
# Returns: | |
# text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
# applying the projection layer to the pooled output of [`SiglipTextModel`]. | |
# Examples: | |
# ```python | |
# >>> from transformers import AutoTokenizer, SiglipModel | |
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224") | |
# >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") | |
# >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
# >>> text_features = model.get_text_features(**inputs) | |
# ```""" | |
# # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. | |
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
# output_hidden_states = ( | |
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
# ) | |
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# text_outputs = self.text_model( | |
# input_ids=input_ids, | |
# attention_mask=attention_mask, | |
# position_ids=position_ids, | |
# output_attentions=output_attentions, | |
# output_hidden_states=output_hidden_states, | |
# return_dict=return_dict, | |
# ) | |
# pooled_output = text_outputs[1] | |
# return pooled_output | |
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) | |
# def get_image_features( | |
# self, | |
# pixel_values: Optional[torch.FloatTensor] = None, | |
# output_attentions: Optional[bool] = None, | |
# output_hidden_states: Optional[bool] = None, | |
# return_dict: Optional[bool] = None, | |
# ) -> torch.FloatTensor: | |
# r""" | |
# Returns: | |
# image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
# applying the projection layer to the pooled output of [`SiglipVisionModel`]. | |
# Examples: | |
# ```python | |
# >>> from PIL import Image | |
# >>> import requests | |
# >>> from transformers import AutoProcessor, SiglipModel | |
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224") | |
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
# >>> image = Image.open(requests.get(url, stream=True).raw) | |
# >>> inputs = processor(images=image, return_tensors="pt") | |
# >>> image_features = model.get_image_features(**inputs) | |
# ```""" | |
# # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components. | |
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
# output_hidden_states = ( | |
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
# ) | |
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# vision_outputs = self.vision_model( | |
# pixel_values=pixel_values, | |
# output_attentions=output_attentions, | |
# output_hidden_states=output_hidden_states, | |
# return_dict=return_dict, | |
# ) | |
# pooled_output = vision_outputs[1] | |
# return pooled_output | |
# @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) | |
# @replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig) | |
# def forward( | |
# self, | |
# input_ids: Optional[torch.LongTensor] = None, | |
# pixel_values: Optional[torch.FloatTensor] = None, | |
# attention_mask: Optional[torch.Tensor] = None, | |
# position_ids: Optional[torch.LongTensor] = None, | |
# return_loss: Optional[bool] = None, | |
# output_attentions: Optional[bool] = None, | |
# output_hidden_states: Optional[bool] = None, | |
# return_dict: Optional[bool] = None, | |
# ) -> Union[Tuple, SiglipOutput]: | |
# r""" | |
# Returns: | |
# Examples: | |
# ```python | |
# >>> from PIL import Image | |
# >>> import requests | |
# >>> from transformers import AutoProcessor, SiglipModel | |
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224") | |
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
# >>> image = Image.open(requests.get(url, stream=True).raw) | |
# >>> inputs = processor( | |
# ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True | |
# ... ) | |
# >>> outputs = model(**inputs) | |
# >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score | |
# >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities | |
# ```""" | |
# # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. | |
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
# output_hidden_states = ( | |
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
# ) | |
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# vision_outputs = self.vision_model( | |
# pixel_values=pixel_values, | |
# output_attentions=output_attentions, | |
# output_hidden_states=output_hidden_states, | |
# return_dict=return_dict, | |
# ) | |
# text_outputs = self.text_model( | |
# input_ids=input_ids, | |
# attention_mask=attention_mask, | |
# position_ids=position_ids, | |
# output_attentions=output_attentions, | |
# output_hidden_states=output_hidden_states, | |
# return_dict=return_dict, | |
# ) | |
# image_embeds = vision_outputs[1] | |
# text_embeds = text_outputs[1] | |
# # normalized features | |
# image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) | |
# text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
# # cosine similarity as logits | |
# logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.temperature.exp() + self.bias | |
# logits_per_image = logits_per_text.t() | |
# z = torch.matmul(image_embeds, text_embeds.t()) * self.temperature.exp() | |
# loss = None | |
# if return_loss: | |
# raise NotImplementedError("SigLIP loss to be implemented") | |
# if not return_dict: | |
# output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) | |
# return ((loss,) + output) if loss is not None else output | |
# return SiglipOutput( | |
# loss=loss, | |
# logits_per_image=logits_per_image, | |
# logits_per_text=logits_per_text, | |
# text_embeds=text_embeds, | |
# image_embeds=image_embeds, | |
# text_model_output=text_outputs, | |
# vision_model_output=vision_outputs, | |
# ) |