File size: 27,578 Bytes
ce3e773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
# Copyright 2024 Yanwei Li
# ------------------------------------------------------------------------
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import os
import transformers
import safetensors
from transformers.deepspeed import is_deepspeed_zero3_enabled
import deepspeed
from .multimodal_encoder.builder import build_vision_tower, build_vision_tower_aux
from .multimodal_projector.builder import build_vision_projector
from mgm.constants import (IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN,
DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN)
IS_NEW_TRANSFORMERS = transformers.__version__ >= "4.34.0"
class MGMMetaModel:
def __init__(self, config):
super(MGMMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if hasattr(config, "mm_vision_tower_aux"):
self.vision_tower_aux = build_vision_tower_aux(config, delay_load=True)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_vision_tower_aux(self):
vision_tower_aux = getattr(self, 'vision_tower_aux', None)
if type(vision_tower_aux) is list:
vision_tower_aux = vision_tower_aux[0]
return vision_tower_aux
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
vision_tower_aux = model_args.vision_tower_aux
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
self.config.mm_vision_tower_aux = vision_tower_aux
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
if vision_tower_aux is not None:
if self.get_vision_tower_aux() is None:
vision_tower_aux = build_vision_tower_aux(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower_aux = [vision_tower_aux]
else:
self.vision_tower_aux = vision_tower_aux
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower_aux = self.vision_tower_aux[0]
else:
vision_tower_aux = self.vision_tower_aux
vision_tower_aux.load_model()
self.config.mm_hidden_size_aux = vision_tower_aux.hidden_size
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
# self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_hidden_size = 3072
self.config.mm_hidden_size_uni = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k}
if 'model' in mm_projector_weights.keys():
mm_projector_weights = mm_projector_weights['model']
if is_deepspeed_zero3_enabled():
if len(mm_projector_weights) > 0:
with deepspeed.zero.GatheredParameters(mm_projector_weights, modifier_rank=0):
if torch.distributed.get_rank() == 0:
self.mm_projector.load_state_dict(mm_projector_weights)
else:
status = self.mm_projector.load_state_dict(mm_projector_weights, strict=False)
print('missing_keys:', status.missing_keys)
else:
if is_deepspeed_zero3_enabled():
named_parameters = get_w(mm_projector_weights, 'mm_projector')
if len(named_parameters) > 0:
with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0):
if torch.distributed.get_rank() == 0:
self.mm_projector.load_state_dict(named_parameters)
else:
status = self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False)
print('missing_keys:', status.missing_keys)
self.mm_projector = self.mm_projector.to(device='cuda')
def initialize_uni_modules(self, model_args, for_eval=False):
pretrain_mm_mlp_adapter = getattr(model_args, "pretrain_mm_mlp_adapter", None)
self.config.image_size_aux = getattr(model_args, 'image_size_aux', 320)
self.config.optimize_vision_tower = getattr(model_args, 'optimize_vision_tower', False)
self.config.optimize_vision_tower_aux = getattr(model_args, 'optimize_vision_tower_aux', False)
self.vlm_uni_query_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_uni),
nn.Linear(self.config.mm_hidden_size_uni, self.config.mm_hidden_size_uni))
self.vlm_uni_aux_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_aux),
nn.Linear(self.config.mm_hidden_size_aux, self.config.mm_hidden_size_uni))
self.vlm_uni_val_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_aux),
nn.Linear(self.config.mm_hidden_size_aux, self.config.mm_hidden_size_uni))
if pretrain_mm_mlp_adapter is not None:
projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
else:
trainable_module = ['vlm_uni', 'vision_fpn', 'vision_stages']
if hasattr(model_args, 'model_name_or_path'):
model_save_path = model_args.model_name_or_path
else:
model_save_path = model_args.model_path
model_idx_path = getattr(model_args, 'model_path', model_save_path)
if IS_NEW_TRANSFORMERS:
try:
weight_file = json.load(open(os.path.join(model_idx_path, 'model.safetensors.index.json'), 'r'))['weight_map']
except:
weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))['weight_map']
else:
weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))['weight_map']
model_path = set([weight_file[_key] for _key in weight_file if any([_module in _key for _module in trainable_module])])
projector_weights = {}
for _model in model_path:
if not IS_NEW_TRANSFORMERS:
projector_weights.update(torch.load(os.path.join(model_idx_path, _model), map_location='cpu'))
else:
with safetensors.safe_open(os.path.join(model_idx_path, _model), framework="pt", device='cpu') as f:
for _key in f.keys():
projector_weights.update({_key: f.get_tensor(_key)})
if len(projector_weights) == 0:
return
def get_w(weights, keyword, main_module, sub_module):
if getattr(main_module, sub_module, None) is None:
return
pretrain_weight = {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k}
if len(pretrain_weight) == 0:
return
if is_deepspeed_zero3_enabled():
named_parameters = [v for k, v in getattr(main_module, sub_module).named_parameters()]
if len(named_parameters) > 0:
# because zero3 puts placeholders in model params, this context
# manager gathers (unpartitions) the params of the current layer, then loads from
# the state dict and then re-partitions them again
with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0):
if torch.distributed.get_rank() == 0:
getattr(main_module, sub_module).load_state_dict(pretrain_weight)
with deepspeed.zero.GatheredParameters(self.mm_projector[0].weight, modifier_rank=None):
weight_type = self.mm_projector[0].weight.dtype
device_type = self.mm_projector[0].weight.device
else:
weight_type = self.mm_projector[0].weight.dtype
device_type = self.mm_projector[0].weight.device
getattr(main_module, sub_module).load_state_dict(pretrain_weight)
if weight_type == torch.uint8 or weight_type == torch.int8 or weight_type == torch.int16:
weight_type = torch.float16
getattr(main_module, sub_module).to(device=device_type, dtype=weight_type)
print(f"Loading {sub_module} weights...")
# load pretrained weights
get_w(projector_weights, 'vision_tower.vision_tower', self.vision_tower, 'vision_tower')
# load pretrained weights
if self.config.optimize_vision_tower_aux:
# not optimize vision stem, just used to check
get_w(projector_weights, 'vision_tower_aux.vision_stem', self.vision_tower_aux, 'vision_stem')
get_w(projector_weights, 'vision_tower_aux.vision_stages', self.vision_tower_aux, 'vision_stages')
get_w(projector_weights, 'vlm_uni_query_projector', self, 'vlm_uni_query_projector')
get_w(projector_weights, 'vlm_uni_aux_projector', self, 'vlm_uni_aux_projector')
get_w(projector_weights, 'vlm_uni_val_projector', self, 'vlm_uni_val_projector')
class MGMMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_vision_tower_aux(self):
return self.get_model().get_vision_tower_aux()
def encode_images(self, images, images_aux=None, is_video=False):
image_grid = getattr(self.config, 'image_grid', 1)
image_global = getattr(self.config, 'image_global', False)
if image_grid > 1:
batch_size = images.shape[0]
if image_global:
global_images = images[:, -1:].flatten(0,1).contiguous()
grid_images = images[:, :-1].flatten(0,1).contiguous()
images = torch.cat([grid_images, global_images], dim=0)
else:
images = images.flatten(0,1).contiguous()
image_features, image_forward_outs = self.get_model().get_vision_tower()(images)
if image_global: # false
image_feat_global = image_features[-len(global_images):]
image_features = image_features[:len(grid_images)]
if images_aux is not None:
image_aux_features_raw = self.get_model().get_vision_tower_aux()(images_aux).to(
dtype=image_features.dtype, device=image_features.device)
if image_global:
image_aux_features_global = F.interpolate(image_aux_features_raw.float(),
scale_factor=1/image_grid,
mode='bilinear',
align_corners=False).to(dtype=image_aux_features_raw.dtype)
image_feat_global, image_aux_feat_global = self.unified_resampler(image_feat_global, image_aux_features_global)
if image_grid > 1:
image_aux_features_raw = image_aux_features_raw.reshape(*image_aux_features_raw.shape[:2],
image_grid,
image_aux_features_raw.shape[-2]//image_grid,
image_grid,
image_aux_features_raw.shape[-1]//image_grid)
image_aux_features_raw = image_aux_features_raw.permute(0, 2, 4, 1, 3, 5).flatten(1,2).flatten(0,1).contiguous()
image_features, image_aux_features = self.unified_resampler(image_features, image_aux_features_raw)
if image_grid > 1:
image_features = image_features.reshape(batch_size, image_grid**2, *image_features.shape[1:])
image_features = image_features.flatten(1,2).contiguous()
image_aux_features = image_aux_features.reshape(batch_size, image_grid**2, *image_aux_features.shape[1:])
image_aux_features = image_aux_features.flatten(1,2).contiguous()
# add global features, [global, local]
if image_global:
image_features = torch.cat([image_feat_global, image_features], dim=1)
image_aux_features = torch.cat([image_aux_feat_global, image_aux_features], dim=1)
# token generation
image_features = image_features + image_aux_features
# dense connector
image_features_1 = []
image_features_2 = []
for i in range(0, 12):
image_features_1.append(image_forward_outs.hidden_states[i][:, 1:].to(image_features.dtype))
image_features_1 = torch.stack(image_features_1, dim=0)
image_features_1 = torch.sum(image_features_1, dim=0) / 12
for i in range(12, 24):
image_features_2.append(image_forward_outs.hidden_states[i][:, 1:].to(image_features.dtype))
image_features_2 = torch.stack(image_features_2, dim=0)
image_features_2 = torch.sum(image_features_2, dim=0) / 12
image_features = torch.cat([image_features, image_features_1, image_features_2], dim=-1)
## dense connector end
# process image features after token generation
image_features = self.get_model().mm_projector(image_features)
return image_features
def unified_resampler(self, images, images_aux):
# patchwise with square images
patch_num = int(images.shape[1]**0.5)
patch_size = images_aux.shape[-1]//patch_num
# within patch attention
images_aux = images_aux.permute(0,2,3,1)
images_aux = images_aux.reshape(len(images_aux), patch_num, patch_size, patch_num, patch_size, images_aux.shape[-1])
images_aux = images_aux.permute(0,1,3,2,4,5)
images_aux = images_aux.reshape(len(images_aux), patch_num**2, patch_size**2, images_aux.shape[-1]).contiguous()
# token attention
embed_query = self.get_model().vlm_uni_query_projector(images)
embed_aux = self.get_model().vlm_uni_aux_projector(images_aux)
embed_value = self.get_model().vlm_uni_val_projector(images_aux)
embed_att = embed_query[:,:,None] @ (embed_aux.transpose(-1,-2) / (embed_aux.shape[-1]**0.5))
embed_att = embed_att.nan_to_num()
embed_feat = (embed_att.softmax(-1) @ embed_value).mean(2)
return images, embed_feat
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images=None, images_aux=None,
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if isinstance(images, list):
images = torch.stack(images, dim=0)
if isinstance(images_aux, list):
images_aux = torch.stack(images_aux, dim=0)
image_features = self.encode_images(images, images_aux)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
max_pos_id = 0
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
max_pos_id += cur_input_embeds_no_im[i].shape[0]
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
max_pos_id += cur_image_features.shape[0]
cur_new_input_embeds = [x.to(device=cur_input_embeds.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
|