File size: 27,578 Bytes
ce3e773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.
# ------------------------------------------------------------------------
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
# Copyright 2024 Yanwei Li
# ------------------------------------------------------------------------

from abc import ABC, abstractmethod

import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import os
import transformers
import safetensors
from transformers.deepspeed import is_deepspeed_zero3_enabled
import deepspeed

from .multimodal_encoder.builder import build_vision_tower, build_vision_tower_aux
from .multimodal_projector.builder import build_vision_projector

from mgm.constants import (IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, 
                             DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN)

IS_NEW_TRANSFORMERS = transformers.__version__ >= "4.34.0"

class MGMMetaModel:

    def __init__(self, config):
        super(MGMMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=True)
            self.mm_projector = build_vision_projector(config)

        if hasattr(config, "mm_vision_tower_aux"):
            self.vision_tower_aux = build_vision_tower_aux(config, delay_load=True)

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def get_vision_tower_aux(self):
        vision_tower_aux = getattr(self, 'vision_tower_aux', None)
        if type(vision_tower_aux) is list:
            vision_tower_aux = vision_tower_aux[0]
        return vision_tower_aux

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        vision_tower_aux = model_args.vision_tower_aux
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter

        self.config.mm_vision_tower = vision_tower
        self.config.mm_vision_tower_aux = vision_tower_aux

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
            else:
                self.vision_tower = vision_tower
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_tower = self.vision_tower[0]
            else:
                vision_tower = self.vision_tower
            vision_tower.load_model()

        if vision_tower_aux is not None:
            if self.get_vision_tower_aux() is None:
                vision_tower_aux = build_vision_tower_aux(model_args)

                if fsdp is not None and len(fsdp) > 0:
                    self.vision_tower_aux = [vision_tower_aux]
                else:
                    self.vision_tower_aux = vision_tower_aux
            else:
                if fsdp is not None and len(fsdp) > 0:
                    vision_tower_aux = self.vision_tower_aux[0]
                else:
                    vision_tower_aux = self.vision_tower_aux
                vision_tower_aux.load_model()
            self.config.mm_hidden_size_aux = vision_tower_aux.hidden_size

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
        # self.config.mm_hidden_size = vision_tower.hidden_size
        self.config.mm_hidden_size = 3072
        self.config.mm_hidden_size_uni = vision_tower.hidden_size
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature

        if getattr(self, 'mm_projector', None) is None:
            self.mm_projector = build_vision_projector(self.config)
        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k}

            if 'model' in mm_projector_weights.keys():
                mm_projector_weights = mm_projector_weights['model']
                if is_deepspeed_zero3_enabled():
                    if len(mm_projector_weights) > 0:
                        with deepspeed.zero.GatheredParameters(mm_projector_weights, modifier_rank=0):
                            if torch.distributed.get_rank() == 0:
                                self.mm_projector.load_state_dict(mm_projector_weights)
                else:
                    status = self.mm_projector.load_state_dict(mm_projector_weights, strict=False)
                    print('missing_keys:', status.missing_keys)
            else:
                if is_deepspeed_zero3_enabled():
                    named_parameters = get_w(mm_projector_weights, 'mm_projector')
                    if len(named_parameters) > 0:
                        with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0):
                            if torch.distributed.get_rank() == 0:
                                self.mm_projector.load_state_dict(named_parameters)
                else:
                    status = self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False)
                    print('missing_keys:', status.missing_keys)
            self.mm_projector = self.mm_projector.to(device='cuda')

    def initialize_uni_modules(self, model_args, for_eval=False):  
        pretrain_mm_mlp_adapter = getattr(model_args, "pretrain_mm_mlp_adapter", None)
        self.config.image_size_aux = getattr(model_args, 'image_size_aux', 320)
        self.config.optimize_vision_tower = getattr(model_args, 'optimize_vision_tower', False)
        self.config.optimize_vision_tower_aux = getattr(model_args, 'optimize_vision_tower_aux', False)

        self.vlm_uni_query_projector  = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_uni), 
                                                      nn.Linear(self.config.mm_hidden_size_uni, self.config.mm_hidden_size_uni))
        self.vlm_uni_aux_projector  = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_aux),
                                                    nn.Linear(self.config.mm_hidden_size_aux, self.config.mm_hidden_size_uni))
        self.vlm_uni_val_projector  = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_aux),
                                                    nn.Linear(self.config.mm_hidden_size_aux, self.config.mm_hidden_size_uni))
        
        if pretrain_mm_mlp_adapter is not None:
            projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
        else:
            trainable_module = ['vlm_uni', 'vision_fpn', 'vision_stages']
            if hasattr(model_args, 'model_name_or_path'):
                model_save_path = model_args.model_name_or_path
            else:
                model_save_path = model_args.model_path
            model_idx_path = getattr(model_args, 'model_path', model_save_path)
            if IS_NEW_TRANSFORMERS:
                try:
                    weight_file = json.load(open(os.path.join(model_idx_path, 'model.safetensors.index.json'), 'r'))['weight_map']
                except:
                    weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))['weight_map']
            else:
                weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))['weight_map']
            model_path = set([weight_file[_key] for _key in weight_file if any([_module in _key for _module in trainable_module])])
            projector_weights = {}
            for _model in model_path:
                if not IS_NEW_TRANSFORMERS:
                    projector_weights.update(torch.load(os.path.join(model_idx_path, _model), map_location='cpu'))
                else:
                    with safetensors.safe_open(os.path.join(model_idx_path, _model), framework="pt", device='cpu') as f:
                        for _key in f.keys():
                            projector_weights.update({_key: f.get_tensor(_key)})
            if len(projector_weights) == 0:
                return

        def get_w(weights, keyword, main_module, sub_module):
            if getattr(main_module, sub_module, None) is None:
                return
            
            pretrain_weight = {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k}
            if len(pretrain_weight) == 0:
                return
            if is_deepspeed_zero3_enabled():
                named_parameters = [v for k, v in getattr(main_module, sub_module).named_parameters()]
                if len(named_parameters) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            getattr(main_module, sub_module).load_state_dict(pretrain_weight)
                    with deepspeed.zero.GatheredParameters(self.mm_projector[0].weight, modifier_rank=None):
                        weight_type = self.mm_projector[0].weight.dtype
                        device_type = self.mm_projector[0].weight.device
            else:
                weight_type = self.mm_projector[0].weight.dtype
                device_type = self.mm_projector[0].weight.device
                getattr(main_module, sub_module).load_state_dict(pretrain_weight)
            if weight_type == torch.uint8 or weight_type == torch.int8 or weight_type == torch.int16:
                weight_type = torch.float16
            getattr(main_module, sub_module).to(device=device_type, dtype=weight_type)
            print(f"Loading {sub_module} weights...")
        
        # load pretrained weights
        get_w(projector_weights, 'vision_tower.vision_tower', self.vision_tower, 'vision_tower')

        # load pretrained weights
        if self.config.optimize_vision_tower_aux:
            # not optimize vision stem, just used to check
            get_w(projector_weights, 'vision_tower_aux.vision_stem', self.vision_tower_aux, 'vision_stem')
            get_w(projector_weights, 'vision_tower_aux.vision_stages', self.vision_tower_aux, 'vision_stages')
        get_w(projector_weights, 'vlm_uni_query_projector', self, 'vlm_uni_query_projector')
        get_w(projector_weights, 'vlm_uni_aux_projector', self, 'vlm_uni_aux_projector')
        get_w(projector_weights, 'vlm_uni_val_projector', self, 'vlm_uni_val_projector')
    
class MGMMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def get_vision_tower_aux(self):
        return self.get_model().get_vision_tower_aux()

    def encode_images(self, images, images_aux=None, is_video=False):
        image_grid = getattr(self.config, 'image_grid', 1)
        image_global = getattr(self.config, 'image_global', False)
        if image_grid > 1:
            batch_size = images.shape[0]
            if image_global:
                global_images = images[:, -1:].flatten(0,1).contiguous()
                grid_images = images[:, :-1].flatten(0,1).contiguous()
                images = torch.cat([grid_images, global_images], dim=0)
            else:
                images = images.flatten(0,1).contiguous()
        
        image_features, image_forward_outs = self.get_model().get_vision_tower()(images)
        
        if image_global:    # false
            image_feat_global = image_features[-len(global_images):]
            image_features = image_features[:len(grid_images)]
        
        if images_aux is not None:
            image_aux_features_raw = self.get_model().get_vision_tower_aux()(images_aux).to(
                dtype=image_features.dtype, device=image_features.device)
            
            if image_global:
                image_aux_features_global = F.interpolate(image_aux_features_raw.float(), 
                                                            scale_factor=1/image_grid, 
                                                            mode='bilinear', 
                                                            align_corners=False).to(dtype=image_aux_features_raw.dtype)
                image_feat_global, image_aux_feat_global = self.unified_resampler(image_feat_global, image_aux_features_global)

            if image_grid > 1:
                image_aux_features_raw = image_aux_features_raw.reshape(*image_aux_features_raw.shape[:2],
                                                                        image_grid,
                                                                        image_aux_features_raw.shape[-2]//image_grid,
                                                                        image_grid,
                                                                        image_aux_features_raw.shape[-1]//image_grid)
                image_aux_features_raw = image_aux_features_raw.permute(0, 2, 4, 1, 3, 5).flatten(1,2).flatten(0,1).contiguous()
            image_features, image_aux_features = self.unified_resampler(image_features, image_aux_features_raw)
            
            if image_grid > 1:
                image_features = image_features.reshape(batch_size, image_grid**2, *image_features.shape[1:])
                image_features = image_features.flatten(1,2).contiguous()
                image_aux_features = image_aux_features.reshape(batch_size, image_grid**2, *image_aux_features.shape[1:])
                image_aux_features = image_aux_features.flatten(1,2).contiguous()
            
            # add global features, [global, local]
            if image_global:
                image_features = torch.cat([image_feat_global, image_features], dim=1)
                image_aux_features = torch.cat([image_aux_feat_global, image_aux_features], dim=1)
            
            # token generation
            image_features = image_features + image_aux_features

        # dense connector
        image_features_1 = []
        image_features_2 = []
        for i in range(0, 12):
            image_features_1.append(image_forward_outs.hidden_states[i][:, 1:].to(image_features.dtype))
        image_features_1 = torch.stack(image_features_1, dim=0)
        image_features_1 = torch.sum(image_features_1, dim=0) / 12
        for i in range(12, 24):
            image_features_2.append(image_forward_outs.hidden_states[i][:, 1:].to(image_features.dtype))
        image_features_2 = torch.stack(image_features_2, dim=0)
        image_features_2 = torch.sum(image_features_2, dim=0) / 12

        image_features = torch.cat([image_features, image_features_1, image_features_2], dim=-1)
        ## dense connector end
        
        # process image features after token generation
        image_features = self.get_model().mm_projector(image_features)
        
        return image_features

    def unified_resampler(self, images, images_aux):
        # patchwise with square images
        patch_num = int(images.shape[1]**0.5)
        patch_size = images_aux.shape[-1]//patch_num
        # within patch attention
        images_aux = images_aux.permute(0,2,3,1)
        images_aux = images_aux.reshape(len(images_aux), patch_num, patch_size, patch_num, patch_size, images_aux.shape[-1])
        images_aux = images_aux.permute(0,1,3,2,4,5)
        images_aux = images_aux.reshape(len(images_aux), patch_num**2, patch_size**2, images_aux.shape[-1]).contiguous()

        # token attention
        embed_query = self.get_model().vlm_uni_query_projector(images)
        embed_aux = self.get_model().vlm_uni_aux_projector(images_aux)
        embed_value = self.get_model().vlm_uni_val_projector(images_aux) 
        embed_att = embed_query[:,:,None] @ (embed_aux.transpose(-1,-2) / (embed_aux.shape[-1]**0.5))
        embed_att = embed_att.nan_to_num()
        embed_feat = (embed_att.softmax(-1) @ embed_value).mean(2)
        
        return images, embed_feat

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels, images=None, images_aux=None,
    ):        
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:                
                target_shape = past_key_values[-1][-1].shape[-2] + 1
                attention_mask = torch.cat((attention_mask, torch.ones(
                    (attention_mask.shape[0], target_shape - attention_mask.shape[1]),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device
                )), dim=1)
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        if isinstance(images, list):
            images = torch.stack(images, dim=0)
        if isinstance(images_aux, list):
            images_aux = torch.stack(images_aux, dim=0)

        image_features = self.encode_images(images, images_aux)

        # TODO: image start / end is not implemented here to support pretraining.
        if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
            raise NotImplementedError

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- TODO: double check
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []
            
            max_pos_id = 0
            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                max_pos_id += cur_input_embeds_no_im[i].shape[0]
                if i < num_images:
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
                    max_pos_id += cur_image_features.shape[0]
            
            cur_new_input_embeds = [x.to(device=cur_input_embeds.device) for x in cur_new_input_embeds]
            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
        if tokenizer_model_max_length is not None:
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
                new_input_embeds_padded.append(torch.cat((
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
                    cur_new_embed
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)  
            else:
                new_input_embeds_padded.append(torch.cat((
                    cur_new_embed,
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
                    
        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False