HenseHsieh commited on
Commit
94e6641
1 Parent(s): 5800e50

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **SAC** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7d1f33d13130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d1f33d28b00>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708953491214117613, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdneTPzdmE78AALo97WNIPzasjD/bBLo9xZinv6Hxxb6u9Lk9tkP5vIjMtj+u9Lk9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdA00v1BnAT+ROYq/64ipP8qpAz+ROYq/nPFJP31L0r4PvuK+l7MRPpSKpL836wE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADQj8S+xO7jv7d7sz900Lw/Zle8PtWwBr/CK/s+dneTPzdmE78AALo9od/8u9RjZ7zuXfG7r8hlvKjXsjugCzA9bEmaulDCrLxOZ1K6NKRxPyjvFryiTWW/v6IJP8lYQz/N8R+/E0+Kv+1jSD82rIw/2wS6PUhR+rtcUWm8SZYPvPMYa7xYyKY75RAwPeL8nroywqy84BevujXTij+NbcQ+10A5vmBTyT6N1s6+gvNUP0tJhLvFmKe/ofHFvq70uT3DtO67Mf9nvH6KFLzqcHC8L2alO6ALMD1ASpq6W8KsvAX0vbp0XYi/RpRlP4xVhz91qQPApMG4P4SWhD8Rw4Q/tkP5vIjMtj+u9Lk9xbTuuzH/Z7zlzhC8/XBwvBpmpTugCzA9LkqaulvCrLy48b26lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.1520832 -0.5757784 0.09082031]\n [ 0.78277475 1.0990055 0.09082957]\n [-1.3093497 -0.3866091 0.09079872]\n [-0.03042779 1.4281168 0.09079872]]", "desired_goal": "[[-0.7033303 0.5054827 -1.0798818 ]\n [ 1.3244909 0.5143095 -1.0798818 ]\n [ 0.7888429 -0.41073218 -0.44285628]\n [ 0.14228664 -1.2854791 0.50749534]]", "observation": "[[-3.83909702e-01 -1.78072405e+00 1.40221298e+00 1.47511148e+00\n 3.67854297e-01 -5.26135743e-01 4.90568221e-01 1.15208316e+00\n -5.75778425e-01 9.08203125e-02 -7.71708833e-03 -1.41229220e-02\n -7.36593362e-03 -1.40248975e-02 5.45783713e-03 4.29798365e-02\n -1.17711490e-03 -2.10887492e-02 -8.02625786e-04]\n [ 9.43911791e-01 -9.21229273e-03 -8.95715833e-01 5.37639558e-01\n 7.63073504e-01 -6.24783337e-01 -1.08053815e+00 7.82774746e-01\n 1.09900546e+00 9.08295736e-02 -7.63908401e-03 -1.42405890e-02\n -8.76385812e-03 -1.43492101e-02 5.08980080e-03 4.29848619e-02\n -1.21298083e-03 -2.10886933e-02 -1.33585557e-03]\n [ 1.08457053e+00 3.83648306e-01 -1.80911407e-01 3.93214226e-01\n -4.03980643e-01 8.31840634e-01 -4.03705752e-03 -1.30934966e+00\n -3.86609107e-01 9.07987207e-02 -7.28473207e-03 -1.41599635e-02\n -9.06622224e-03 -1.46753583e-02 5.04758162e-03 4.29798365e-02\n -1.17713958e-03 -2.10887697e-02 -1.44922792e-03]\n [-1.06535196e+00 8.96793723e-01 1.05729818e+00 -2.05721784e+00\n 1.44340944e+00 1.03584337e+00 1.03720295e+00 -3.04277949e-02\n 1.42811680e+00 9.07987207e-02 -7.28473300e-03 -1.41599635e-02\n -8.83839000e-03 -1.46753760e-02 5.04757185e-03 4.29798365e-02\n -1.17713748e-03 -2.10887697e-02 -1.44915935e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5orxPWfZc71hwaM8LwSlPTPz4T0NwqM8aUAGvmpDJb3Qv6M8UnPfuscnEz7Qv6M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8ll6vbOBMj0K16M8YiToPaekNT0K16M8vcGJPcgPE70EyH496qA+PIXy5L2dKgA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAOZBK+lx/zvoinDz8atZY+JsgXPtxHG74NKXM95orxPWfZc71hwaM8eO1ut56NYjcCVOw5gb+oNwQPxTeknG0tbKtnMt8EWzKu7hM6SJ8bPrE1HT14lAQ9lDaJPT7Jkz4J5D2+GId2OC8EpT0z8+E9DcKjPDTm7jSAG4+wEBmutygbezAEvc80hjnQNLFLorcEKkQzAYX0q3GdOz7r2Rs++JNJPlX2Aj3QBwG+X5SgPp+vJj1pQAa+akMlvdC/ozxG2Iw4ajobN8OzALkysKm3yeUXtjBTUKyRfEwvaAhbLs6e+7hEsZa+1AqaPv2r9j6Y8g+/FMYHP8VdxD701qM9UnPfuscnEz7Qv6M8MtiMOEc6GzdVfUC4hrKpt5vwF7awV9+tirezMLryWi7Wd/u4lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.11794071 -0.0595335 0.01998967]\n [ 0.08057439 0.11032715 0.01998999]\n [-0.13110508 -0.04034749 0.01998892]\n [-0.00170479 0.14370643 0.01998892]]", "desired_goal": "[[-0.06112093 0.04358072 0.02 ]\n [ 0.11335064 0.04434648 0.02 ]\n [ 0.06726406 -0.03590372 0.06220247]\n [ 0.01163504 -0.11179069 0.12516256]]", "observation": "[[-1.42959803e-01 -4.74850386e-01 5.61150074e-01 2.94350445e-01\n 1.48224443e-01 -1.51641309e-01 5.93653210e-02 1.17940709e-01\n -5.95335029e-02 1.99896712e-02 -1.42411955e-05 1.35036225e-05\n 4.50760184e-04 2.01163366e-05 2.34912222e-05 1.35066715e-11\n 1.34849465e-08 1.27485853e-08 5.64317103e-04]\n [ 1.51974797e-01 3.83812822e-02 3.23681533e-02 6.69986308e-02\n 2.88644731e-01 -1.85440198e-01 5.87767863e-05 8.05743858e-02\n 1.10327147e-01 1.99899916e-02 4.44984494e-07 -1.04124354e-09\n -2.07540870e-05 9.13518594e-10 3.86942816e-07 3.87848729e-07\n -1.93471515e-05 4.56730191e-08 -1.73741588e-12]\n [ 1.83217779e-01 1.52198479e-01 1.96853518e-01 3.19732018e-02\n -1.26006365e-01 3.13631982e-01 4.06948291e-02 -1.31105080e-01\n -4.03474942e-02 1.99889243e-02 6.71600428e-05 9.25232052e-06\n -1.22739977e-04 -2.02284173e-05 -2.26345060e-06 -2.96047561e-12\n 1.85979468e-10 4.98023012e-11 -1.19981923e-04]\n [-2.94321179e-01 3.00863862e-01 4.81780916e-01 -5.62295437e-01\n 5.30366182e-01 3.83527905e-01 7.99998343e-02 -1.70479179e-03\n 1.43706426e-01 1.99889243e-02 6.71598973e-05 9.25228869e-06\n -4.58930917e-05 -2.02295014e-05 -2.26408042e-06 -2.53911059e-11\n 1.30761291e-09 4.97830457e-11 -1.19909339e-04]]"}, "_episode_num": 20737, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C1Lw9rftQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1L1JI1+AmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1L+SFPBSDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MDKyB06pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MBgmJFb3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MFueBg/kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MQJ7TlT4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MVIuscQzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MTmyxA0LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MX3pKSPmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MiKkAPupdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MnN7rs0IdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1MnkFOfukdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Mltrj5sTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Mp/GACnxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MztG/etTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1M43R1HOKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1M2fQv6CUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1M6sIiTt+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NEge3hGZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NJ6tga3rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NIBvitJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NMPZdv87dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NWFJtix3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NbX6AOJ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NY8KPXCkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NdIlQdjodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NnipWFN+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Nsx2nsLOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Nqmu9vjwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Nu04WDYidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1N4j6eoUBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1N92vbGm2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1N+NsabWmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1N72kep4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OAJNKyv+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OK58jRlZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OQnoLXtjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OOhtYSxrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OSy0jTrndX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1OTJNsWO7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OdHqzJIUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Oi02YOUddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1OjQHqu8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OgqEWZZ0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OlLW/ag3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Ou4NZvDQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1O0yoCMgmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Ox+nEVFhdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1OyYg7o0RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1O2luBMBZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PAM9SuQqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PGG29crzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PEAAQxvfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PIOPq9oOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PTHWe6I4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PZM1Gb1AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PW0jcEeRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PbCxiXpodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PlhKQJXydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PrkipvP1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PpPkeZG8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Pte/1xsEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1P2xi5NGmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1P8xF3IMjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1P6iMcZLqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1P+yCnP3SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QIm0VrRCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QObKJVKgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QL3lCCz1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QQEDuBtldX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1QQcaXKKYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QZBXGOuJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Qe3TRYzSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QcSsr/bTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Qg4LCvX9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Qp/cafjCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Qv2ahHskdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QtccZLqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QyIMF2V3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Q7WattALdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RBciwB5pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Q/WMfigkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1REEwN9YwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RNiPhhphdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RTdK7I1cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RRNRiw0PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RVxoduHfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RfipBHCodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Rli9du50dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RjXA2ycDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RoAsPJ7tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RyWYa5wwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1R4ghStNjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1R2cdYGMXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1R7JxiobXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1SFGll9SddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1SLGnfl6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1SImL1mJ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1SNL5qM3qdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmIiYmIiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 249975, "buffer_size": 1000000, "batch_size": 100, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7d1f33e27010>", "add": "<function DictReplayBuffer.add at 0x7d1f33e270a0>", "sample": "<function DictReplayBuffer.sample at 0x7d1f33e27130>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7d1f33e271c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d1f33e34fc0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQROf9+aoYuWbHbO+1AgVMDowDaW5jlIoR15TCGaKlEreHYunie2B6ugB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (695 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-26T14:54:30.762073"}
sac-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59ae5ee5d0fc7359ce26517f3d5c73ae22dc4c11afec217abddbc4e0b716e145
3
+ size 3306026
sac-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.1
sac-PandaPickAndPlace-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08d77d53124a72034f5e652c6fd5baa3892e3b35231bb56871097bcf9acdd085
3
+ size 602958
sac-PandaPickAndPlace-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4adb37af62dd1f796df3448ca507736bffb73381a8e770f6fea1d31226570f21
3
+ size 1189802
sac-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7d1f33d13130>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7d1f33d28b00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "use_sde": false
14
+ },
15
+ "num_timesteps": 1000000,
16
+ "_total_timesteps": 1000000,
17
+ "_num_timesteps_at_start": 0,
18
+ "seed": null,
19
+ "action_noise": null,
20
+ "start_time": 1708953491214117613,
21
+ "learning_rate": 0.001,
22
+ "tensorboard_log": null,
23
+ "_last_obs": {
24
+ ":type:": "<class 'collections.OrderedDict'>",
25
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdneTPzdmE78AALo97WNIPzasjD/bBLo9xZinv6Hxxb6u9Lk9tkP5vIjMtj+u9Lk9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdA00v1BnAT+ROYq/64ipP8qpAz+ROYq/nPFJP31L0r4PvuK+l7MRPpSKpL836wE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADQj8S+xO7jv7d7sz900Lw/Zle8PtWwBr/CK/s+dneTPzdmE78AALo9od/8u9RjZ7zuXfG7r8hlvKjXsjugCzA9bEmaulDCrLxOZ1K6NKRxPyjvFryiTWW/v6IJP8lYQz/N8R+/E0+Kv+1jSD82rIw/2wS6PUhR+rtcUWm8SZYPvPMYa7xYyKY75RAwPeL8nroywqy84BevujXTij+NbcQ+10A5vmBTyT6N1s6+gvNUP0tJhLvFmKe/ofHFvq70uT3DtO67Mf9nvH6KFLzqcHC8L2alO6ALMD1ASpq6W8KsvAX0vbp0XYi/RpRlP4xVhz91qQPApMG4P4SWhD8Rw4Q/tkP5vIjMtj+u9Lk9xbTuuzH/Z7zlzhC8/XBwvBpmpTugCzA9LkqaulvCrLy48b26lGgOSwRLE4aUaBJ0lFKUdS4=",
26
+ "achieved_goal": "[[ 1.1520832 -0.5757784 0.09082031]\n [ 0.78277475 1.0990055 0.09082957]\n [-1.3093497 -0.3866091 0.09079872]\n [-0.03042779 1.4281168 0.09079872]]",
27
+ "desired_goal": "[[-0.7033303 0.5054827 -1.0798818 ]\n [ 1.3244909 0.5143095 -1.0798818 ]\n [ 0.7888429 -0.41073218 -0.44285628]\n [ 0.14228664 -1.2854791 0.50749534]]",
28
+ "observation": "[[-3.83909702e-01 -1.78072405e+00 1.40221298e+00 1.47511148e+00\n 3.67854297e-01 -5.26135743e-01 4.90568221e-01 1.15208316e+00\n -5.75778425e-01 9.08203125e-02 -7.71708833e-03 -1.41229220e-02\n -7.36593362e-03 -1.40248975e-02 5.45783713e-03 4.29798365e-02\n -1.17711490e-03 -2.10887492e-02 -8.02625786e-04]\n [ 9.43911791e-01 -9.21229273e-03 -8.95715833e-01 5.37639558e-01\n 7.63073504e-01 -6.24783337e-01 -1.08053815e+00 7.82774746e-01\n 1.09900546e+00 9.08295736e-02 -7.63908401e-03 -1.42405890e-02\n -8.76385812e-03 -1.43492101e-02 5.08980080e-03 4.29848619e-02\n -1.21298083e-03 -2.10886933e-02 -1.33585557e-03]\n [ 1.08457053e+00 3.83648306e-01 -1.80911407e-01 3.93214226e-01\n -4.03980643e-01 8.31840634e-01 -4.03705752e-03 -1.30934966e+00\n -3.86609107e-01 9.07987207e-02 -7.28473207e-03 -1.41599635e-02\n -9.06622224e-03 -1.46753583e-02 5.04758162e-03 4.29798365e-02\n -1.17713958e-03 -2.10887697e-02 -1.44922792e-03]\n [-1.06535196e+00 8.96793723e-01 1.05729818e+00 -2.05721784e+00\n 1.44340944e+00 1.03584337e+00 1.03720295e+00 -3.04277949e-02\n 1.42811680e+00 9.07987207e-02 -7.28473300e-03 -1.41599635e-02\n -8.83839000e-03 -1.46753760e-02 5.04757185e-03 4.29798365e-02\n -1.17713748e-03 -2.10887697e-02 -1.44915935e-03]]"
29
+ },
30
+ "_last_episode_starts": {
31
+ ":type:": "<class 'numpy.ndarray'>",
32
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
33
+ },
34
+ "_last_original_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5orxPWfZc71hwaM8LwSlPTPz4T0NwqM8aUAGvmpDJb3Qv6M8UnPfuscnEz7Qv6M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8ll6vbOBMj0K16M8YiToPaekNT0K16M8vcGJPcgPE70EyH496qA+PIXy5L2dKgA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAOZBK+lx/zvoinDz8atZY+JsgXPtxHG74NKXM95orxPWfZc71hwaM8eO1ut56NYjcCVOw5gb+oNwQPxTeknG0tbKtnMt8EWzKu7hM6SJ8bPrE1HT14lAQ9lDaJPT7Jkz4J5D2+GId2OC8EpT0z8+E9DcKjPDTm7jSAG4+wEBmutygbezAEvc80hjnQNLFLorcEKkQzAYX0q3GdOz7r2Rs++JNJPlX2Aj3QBwG+X5SgPp+vJj1pQAa+akMlvdC/ozxG2Iw4ajobN8OzALkysKm3yeUXtjBTUKyRfEwvaAhbLs6e+7hEsZa+1AqaPv2r9j6Y8g+/FMYHP8VdxD701qM9UnPfuscnEz7Qv6M8MtiMOEc6GzdVfUC4hrKpt5vwF7awV9+tirezMLryWi7Wd/u4lGgOSwRLE4aUaBJ0lFKUdS4=",
37
+ "achieved_goal": "[[ 0.11794071 -0.0595335 0.01998967]\n [ 0.08057439 0.11032715 0.01998999]\n [-0.13110508 -0.04034749 0.01998892]\n [-0.00170479 0.14370643 0.01998892]]",
38
+ "desired_goal": "[[-0.06112093 0.04358072 0.02 ]\n [ 0.11335064 0.04434648 0.02 ]\n [ 0.06726406 -0.03590372 0.06220247]\n [ 0.01163504 -0.11179069 0.12516256]]",
39
+ "observation": "[[-1.42959803e-01 -4.74850386e-01 5.61150074e-01 2.94350445e-01\n 1.48224443e-01 -1.51641309e-01 5.93653210e-02 1.17940709e-01\n -5.95335029e-02 1.99896712e-02 -1.42411955e-05 1.35036225e-05\n 4.50760184e-04 2.01163366e-05 2.34912222e-05 1.35066715e-11\n 1.34849465e-08 1.27485853e-08 5.64317103e-04]\n [ 1.51974797e-01 3.83812822e-02 3.23681533e-02 6.69986308e-02\n 2.88644731e-01 -1.85440198e-01 5.87767863e-05 8.05743858e-02\n 1.10327147e-01 1.99899916e-02 4.44984494e-07 -1.04124354e-09\n -2.07540870e-05 9.13518594e-10 3.86942816e-07 3.87848729e-07\n -1.93471515e-05 4.56730191e-08 -1.73741588e-12]\n [ 1.83217779e-01 1.52198479e-01 1.96853518e-01 3.19732018e-02\n -1.26006365e-01 3.13631982e-01 4.06948291e-02 -1.31105080e-01\n -4.03474942e-02 1.99889243e-02 6.71600428e-05 9.25232052e-06\n -1.22739977e-04 -2.02284173e-05 -2.26345060e-06 -2.96047561e-12\n 1.85979468e-10 4.98023012e-11 -1.19981923e-04]\n [-2.94321179e-01 3.00863862e-01 4.81780916e-01 -5.62295437e-01\n 5.30366182e-01 3.83527905e-01 7.99998343e-02 -1.70479179e-03\n 1.43706426e-01 1.99889243e-02 6.71598973e-05 9.25228869e-06\n -4.58930917e-05 -2.02295014e-05 -2.26408042e-06 -2.53911059e-11\n 1.30761291e-09 4.97830457e-11 -1.19909339e-04]]"
40
+ },
41
+ "_episode_num": 20737,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.0,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C1Lw9rftQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1L1JI1+AmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1L+SFPBSDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MDKyB06pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MBgmJFb3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MFueBg/kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MQJ7TlT4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MVIuscQzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MTmyxA0LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MX3pKSPmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MiKkAPupdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MnN7rs0IdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1MnkFOfukdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Mltrj5sTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Mp/GACnxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1MztG/etTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1M43R1HOKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1M2fQv6CUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1M6sIiTt+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NEge3hGZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NJ6tga3rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NIBvitJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NMPZdv87dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NWFJtix3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NbX6AOJ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NY8KPXCkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NdIlQdjodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1NnipWFN+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Nsx2nsLOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Nqmu9vjwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Nu04WDYidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1N4j6eoUBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1N92vbGm2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1N+NsabWmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1N72kep4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OAJNKyv+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OK58jRlZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OQnoLXtjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OOhtYSxrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OSy0jTrndX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1OTJNsWO7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OdHqzJIUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Oi02YOUddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1OjQHqu8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OgqEWZZ0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1OlLW/ag3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Ou4NZvDQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1O0yoCMgmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Ox+nEVFhdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1OyYg7o0RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1O2luBMBZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PAM9SuQqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PGG29crzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PEAAQxvfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PIOPq9oOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PTHWe6I4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PZM1Gb1AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PW0jcEeRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PbCxiXpodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PlhKQJXydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PrkipvP1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1PpPkeZG8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Pte/1xsEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1P2xi5NGmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1P8xF3IMjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1P6iMcZLqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1P+yCnP3SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QIm0VrRCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QObKJVKgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QL3lCCz1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QQEDuBtldX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C1QQcaXKKYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QZBXGOuJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Qe3TRYzSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QcSsr/bTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Qg4LCvX9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Qp/cafjCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Qv2ahHskdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QtccZLqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1QyIMF2V3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Q7WattALdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RBciwB5pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Q/WMfigkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1REEwN9YwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RNiPhhphdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RTdK7I1cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RRNRiw0PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RVxoduHfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RfipBHCodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1Rli9du50dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RjXA2ycDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RoAsPJ7tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1RyWYa5wwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1R4ghStNjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1R2cdYGMXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1R7JxiobXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1SFGll9SddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1SLGnfl6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1SImL1mJ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C1SNL5qM3qdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmIiYmIiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
53
+ },
54
+ "_n_updates": 249975,
55
+ "buffer_size": 1000000,
56
+ "batch_size": 100,
57
+ "learning_starts": 100,
58
+ "tau": 0.005,
59
+ "gamma": 0.99,
60
+ "gradient_steps": 1,
61
+ "optimize_memory_usage": false,
62
+ "replay_buffer_class": {
63
+ ":type:": "<class 'abc.ABCMeta'>",
64
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
65
+ "__module__": "stable_baselines3.common.buffers",
66
+ "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
67
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
68
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7d1f33e27010>",
69
+ "add": "<function DictReplayBuffer.add at 0x7d1f33e270a0>",
70
+ "sample": "<function DictReplayBuffer.sample at 0x7d1f33e27130>",
71
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7d1f33e271c0>",
72
+ "__abstractmethods__": "frozenset()",
73
+ "_abc_impl": "<_abc._abc_data object at 0x7d1f33e34fc0>"
74
+ },
75
+ "replay_buffer_kwargs": {},
76
+ "train_freq": {
77
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
78
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
79
+ },
80
+ "use_sde_at_warmup": false,
81
+ "target_entropy": -4.0,
82
+ "ent_coef": "auto",
83
+ "target_update_interval": 1,
84
+ "observation_space": {
85
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
86
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
87
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
88
+ "_shape": null,
89
+ "dtype": null,
90
+ "_np_random": null
91
+ },
92
+ "action_space": {
93
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
94
+ ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQROf9+aoYuWbHbO+1AgVMDowDaW5jlIoR15TCGaKlEreHYunie2B6ugB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
95
+ "dtype": "float32",
96
+ "bounded_below": "[ True True True True]",
97
+ "bounded_above": "[ True True True True]",
98
+ "_shape": [
99
+ 4
100
+ ],
101
+ "low": "[-1. -1. -1. -1.]",
102
+ "high": "[1. 1. 1. 1.]",
103
+ "low_repr": "-1.0",
104
+ "high_repr": "1.0",
105
+ "_np_random": "Generator(PCG64)"
106
+ },
107
+ "n_envs": 4,
108
+ "lr_schedule": {
109
+ ":type:": "<class 'function'>",
110
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
111
+ },
112
+ "batch_norm_stats": [],
113
+ "batch_norm_stats_target": []
114
+ }
sac-PandaPickAndPlace-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20192d8caa1a1f4bf1bf88c9917400789f2c8804ab5230c2e559d2d849a97267
3
+ size 1940
sac-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20dbabfa1b68d36aaee6d357076fea36bd15d0b61353b946aec44cc9f4b332b3
3
+ size 1489782
sac-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb5d202a1d5062d3ca1afd455e5e866a2c0e46384441223a439a89902fdb8eb
3
+ size 1180
sac-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.2.1
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbd074814afb68cf633173f14eee311a82ed3a4e040ed677a95b77068cb6af43
3
+ size 3248