{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7d585e1495a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d585e14c140>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256, 256], "n_critics": 1}, "num_timesteps": 1000050, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": {":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>", ":serialized:": "gAWVMQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWIAAAAAAAAACamZmZmZnJP5qZmZmZmck/mpmZmZmZyT+amZmZmZnJP5RoD0sEhZRoE3SUUpSMBl9kdHlwZZRoCowHZmxvYXQzMpSTlHViLg==", "_mu": "[0. 0. 0. 0.]", "_sigma": "[0.2 0.2 0.2 0.2]", "_dtype": "<class 'numpy.float32'>"}, "start_time": 1709010350043990555, "learning_rate": 0.001, "tensorboard_log": "runs/DDPGPandaPickandPlacev3", "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAZpTRPUsTgj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAJP4CPvVjED6rFQI+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAZpTRPUsTgj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[0.10233383 0.06351336 0.02 ]]", "desired_goal": "[[0.1279226 0.1410063 0.12703578]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0233383e-01\n 6.3513361e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 20459, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -5.0000000000105516e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0DM7VjDQ7cPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7df3L3bmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7lgSFoL5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7stqagEmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7yoa3qiXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM74ip97WvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7+Lm6oVEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8D4pYs/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8Jy4FzMidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8PxL7GeddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8VjBuXNUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8bWsA/9pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8hKHVPN3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8nDP4VRDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8s3z19ORdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8yrNt65YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM84yaiKzidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9AtH8TBZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9I8xASnMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9PzXg9/0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9VjIBBAwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9beg6EJ0dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0DM9fy4x1xLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9haABkqddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9nOUdJardX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9tLp9qk/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9zILkS26dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM94/YlIEsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9+43o9s8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+Ey9M9KVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+KkLORkmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+Qbst03gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+WKw6hg3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+cKD5CWvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+kMwYcebdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+sm3WnTBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+zHXPJJYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+5HGwRoRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM++4mPYFrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/Env+fh/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/KW58Sf2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/QPY8Md+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/WG0VrRCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/b2EK3NLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/hoCuEEldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/nf0wrUcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/tI2bXpXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/y7bpNbkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/44PoV2zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/+wGhVU/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAG7tw71adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAPNvVEuydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAVl3hXKbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAbZCSidrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAhPT7VJ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAnFAkcCHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAs5xJd0JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAyuITGo8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNA4V/e+EidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNA+EUoKD1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBD9sxfv4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBJ6Fyq+8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBPn18LKFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBVgBeXzEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBbSdOIqLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBhGWOZLJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBpQmu1WsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBxbQeFL4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNB4AZKnNxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNB+DypaRqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCDwqqfe2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCJWzIFNddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCPJMURFrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCVErsjVydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCaz8zhxYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCgrHyVfNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCmZ7zCk5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCsVy5qdpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCyA9q1w6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNC306ij+KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNC9i7PIGRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDDRjawljdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDLkiILw4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDTvsE7nxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDac6mwaBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDgTftQbddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDmCL61stdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDrtmWdEtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDxZwsGxEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DND3RMlC1JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DND82KMvRJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNECrJr+HadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEIZOpKjBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEOFc6eXidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNET2Y2Kl6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEZ5A4XGfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEfrhgmZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEljLt/nXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEt5NmDlHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNFAEscyWSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 999950, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQGUE+qCpA7VUshGQc2ZV/SYwDaW5jlIoRDUSOAXNIozGRICLcmg7KpwB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.95, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}", "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ", "__init__": "<function HerReplayBuffer.__init__ at 0x7d585e14a200>", "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7d585e14a290>", "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7d585e14a320>", "set_env": "<function HerReplayBuffer.set_env at 0x7d585e14a3b0>", "add": "<function HerReplayBuffer.add at 0x7d585e14a440>", "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7d585e14a4d0>", "sample": "<function HerReplayBuffer.sample at 0x7d585e14a560>", "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7d585e14a5f0>", "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7d585e14a680>", "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7d585e14a710>", "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7d585e14a7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d585e14f400>"}, "replay_buffer_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVggAAAAAAAAB9lCiMDm5fc2FtcGxlZF9nb2FslEsEjBdnb2FsX3NlbGVjdGlvbl9zdHJhdGVneZSMLXN0YWJsZV9iYXNlbGluZXMzLmhlci5nb2FsX3NlbGVjdGlvbl9zdHJhdGVneZSMFUdvYWxTZWxlY3Rpb25TdHJhdGVneZSTlEsAhZRSlHUu", "n_sampled_goal": 4, "goal_selection_strategy": "GoalSelectionStrategy.FUTURE"}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}} |