HenseHsieh's picture
Initial commit
70d6612 verified
raw
history blame
16.9 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
"__module__": "stable_baselines3.td3.policies",
"__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function MultiInputPolicy.__init__ at 0x7d585e1495a0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7d585e14c140>"
},
"verbose": 1,
"policy_kwargs": {
"net_arch": [
256,
256,
256
],
"n_critics": 1
},
"num_timesteps": 1000050,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": {
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
":serialized:": "gAWVMQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWIAAAAAAAAACamZmZmZnJP5qZmZmZmck/mpmZmZmZyT+amZmZmZnJP5RoD0sEhZRoE3SUUpSMBl9kdHlwZZRoCowHZmxvYXQzMpSTlHViLg==",
"_mu": "[0. 0. 0. 0.]",
"_sigma": "[0.2 0.2 0.2 0.2]",
"_dtype": "<class 'numpy.float32'>"
},
"start_time": 1709010350043990555,
"learning_rate": 0.001,
"tensorboard_log": "runs/DDPGPandaPickandPlacev3",
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'collections.OrderedDict'>",
":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAZpTRPUsTgj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAJP4CPvVjED6rFQI+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAZpTRPUsTgj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLE4aUaBJ0lFKUdS4=",
"achieved_goal": "[[0.10233383 0.06351336 0.02 ]]",
"desired_goal": "[[0.1279226 0.1410063 0.12703578]]",
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0233383e-01\n 6.3513361e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
},
"_episode_num": 20459,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -5.0000000000105516e-05,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0DM7VjDQ7cPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7df3L3bmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7lgSFoL5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7stqagEmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7yoa3qiXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM74ip97WvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM7+Lm6oVEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8D4pYs/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8Jy4FzMidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8PxL7GeddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8VjBuXNUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8bWsA/9pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8hKHVPN3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8nDP4VRDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8s3z19ORdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM8yrNt65YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM84yaiKzidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9AtH8TBZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9I8xASnMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9PzXg9/0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9VjIBBAwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9beg6EJ0dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0DM9fy4x1xLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9haABkqddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9nOUdJardX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9tLp9qk/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9zILkS26dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM94/YlIEsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM9+43o9s8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+Ey9M9KVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+KkLORkmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+Qbst03gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+WKw6hg3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+cKD5CWvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+kMwYcebdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+sm3WnTBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+zHXPJJYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM+5HGwRoRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM++4mPYFrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/Env+fh/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/KW58Sf2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/QPY8Md+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/WG0VrRCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/b2EK3NLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/hoCuEEldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/nf0wrUcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/tI2bXpXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/y7bpNbkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/44PoV2zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DM/+wGhVU/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAG7tw71adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAPNvVEuydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAVl3hXKbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAbZCSidrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAhPT7VJ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAnFAkcCHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAs5xJd0JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNAyuITGo8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNA4V/e+EidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNA+EUoKD1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBD9sxfv4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBJ6Fyq+8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBPn18LKFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBVgBeXzEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBbSdOIqLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBhGWOZLJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBpQmu1WsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNBxbQeFL4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNB4AZKnNxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNB+DypaRqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCDwqqfe2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCJWzIFNddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCPJMURFrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCVErsjVydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCaz8zhxYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCgrHyVfNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCmZ7zCk5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCsVy5qdpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNCyA9q1w6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNC306ij+KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNC9i7PIGRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDDRjawljdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDLkiILw4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDTvsE7nxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDac6mwaBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDgTftQbddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDmCL61stdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDrtmWdEtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNDxZwsGxEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DND3RMlC1JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DND82KMvRJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNECrJr+HadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEIZOpKjBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEOFc6eXidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNET2Y2Kl6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEZ5A4XGfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEfrhgmZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEljLt/nXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNEt5NmDlHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DNFAEscyWSdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
},
"_n_updates": 999950,
"observation_space": {
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
"_shape": null,
"dtype": null,
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQGUE+qCpA7VUshGQc2ZV/SYwDaW5jlIoRDUSOAXNIozGRICLcmg7KpwB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
"dtype": "float32",
"bounded_below": "[ True True True True]",
"bounded_above": "[ True True True True]",
"_shape": [
4
],
"low": "[-1. -1. -1. -1.]",
"high": "[1. 1. 1. 1.]",
"low_repr": "-1.0",
"high_repr": "1.0",
"_np_random": "Generator(PCG64)"
},
"n_envs": 1,
"buffer_size": 1000000,
"batch_size": 256,
"learning_starts": 100,
"tau": 0.95,
"gamma": 0.99,
"gradient_steps": -1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
"__module__": "stable_baselines3.her.her_replay_buffer",
"__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
"__init__": "<function HerReplayBuffer.__init__ at 0x7d585e14a200>",
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7d585e14a290>",
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7d585e14a320>",
"set_env": "<function HerReplayBuffer.set_env at 0x7d585e14a3b0>",
"add": "<function HerReplayBuffer.add at 0x7d585e14a440>",
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7d585e14a4d0>",
"sample": "<function HerReplayBuffer.sample at 0x7d585e14a560>",
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7d585e14a5f0>",
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7d585e14a680>",
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7d585e14a710>",
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7d585e14a7a0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7d585e14f400>"
},
"replay_buffer_kwargs": {
":type:": "<class 'dict'>",
":serialized:": "gAWVggAAAAAAAAB9lCiMDm5fc2FtcGxlZF9nb2FslEsEjBdnb2FsX3NlbGVjdGlvbl9zdHJhdGVneZSMLXN0YWJsZV9iYXNlbGluZXMzLmhlci5nb2FsX3NlbGVjdGlvbl9zdHJhdGVneZSMFUdvYWxTZWxlY3Rpb25TdHJhdGVneZSTlEsAhZRSlHUu",
"n_sampled_goal": 4,
"goal_selection_strategy": "GoalSelectionStrategy.FUTURE"
},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"policy_delay": 1,
"target_noise_clip": 0.0,
"target_policy_noise": 0.1,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"actor_batch_norm_stats": [],
"critic_batch_norm_stats": [],
"actor_batch_norm_stats_target": [],
"critic_batch_norm_stats_target": []
}