File size: 16,469 Bytes
abf3a2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024cf03
 
abf3a2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024cf03
abf3a2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
---
language:
- da
- is
- nb
- nn
- sv

tags:
- translation
- opus-mt-tc

license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-gmq-gmq
  results:
  - task:
      name: Translation isl-swe
      type: translation
      args: isl-swe
    dataset:
      name: europeana2021
      type: europeana2021
      args: isl-swe
    metrics:
       - name: BLEU
         type: bleu
         value: 22.2
       - name: chr-F
         type: chrf
         value: 0.45562
  - task:
      name: Translation nob-isl
      type: translation
      args: nob-isl
    dataset:
      name: europeana2021
      type: europeana2021
      args: nob-isl
    metrics:
       - name: BLEU
         type: bleu
         value: 29.7
       - name: chr-F
         type: chrf
         value: 0.54171
  - task:
      name: Translation nob-swe
      type: translation
      args: nob-swe
    dataset:
      name: europeana2021
      type: europeana2021
      args: nob-swe
    metrics:
       - name: BLEU
         type: bleu
         value: 54.0
       - name: chr-F
         type: chrf
         value: 0.73891
  - task:
      name: Translation dan-isl
      type: translation
      args: dan-isl
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan isl devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 22.2
       - name: chr-F
         type: chrf
         value: 0.50227
  - task:
      name: Translation dan-nob
      type: translation
      args: dan-nob
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan nob devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 28.6
       - name: chr-F
         type: chrf
         value: 0.58445
  - task:
      name: Translation dan-swe
      type: translation
      args: dan-swe
    dataset:
      name: flores101-devtest
      type: flores_101
      args: dan swe devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 38.5
       - name: chr-F
         type: chrf
         value: 0.65000
  - task:
      name: Translation isl-dan
      type: translation
      args: isl-dan
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl dan devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 27.2
       - name: chr-F
         type: chrf
         value: 0.53630
  - task:
      name: Translation isl-nob
      type: translation
      args: isl-nob
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl nob devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 20.5
       - name: chr-F
         type: chrf
         value: 0.49434
  - task:
      name: Translation isl-swe
      type: translation
      args: isl-swe
    dataset:
      name: flores101-devtest
      type: flores_101
      args: isl swe devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 26.0
       - name: chr-F
         type: chrf
         value: 0.53373
  - task:
      name: Translation nob-dan
      type: translation
      args: nob-dan
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob dan devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 31.7
       - name: chr-F
         type: chrf
         value: 0.59657
  - task:
      name: Translation nob-isl
      type: translation
      args: nob-isl
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob isl devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 18.9
       - name: chr-F
         type: chrf
         value: 0.47432
  - task:
      name: Translation nob-swe
      type: translation
      args: nob-swe
    dataset:
      name: flores101-devtest
      type: flores_101
      args: nob swe devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 31.3
       - name: chr-F
         type: chrf
         value: 0.60030
  - task:
      name: Translation swe-dan
      type: translation
      args: swe-dan
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe dan devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 39.0
       - name: chr-F
         type: chrf
         value: 0.64340
  - task:
      name: Translation swe-isl
      type: translation
      args: swe-isl
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe isl devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 21.7
       - name: chr-F
         type: chrf
         value: 0.49590
  - task:
      name: Translation swe-nob
      type: translation
      args: swe-nob
    dataset:
      name: flores101-devtest
      type: flores_101
      args: swe nob devtest
    metrics:
       - name: BLEU
         type: bleu
         value: 28.9
       - name: chr-F
         type: chrf
         value: 0.58336
  - task:
      name: Translation dan-nob
      type: translation
      args: dan-nob
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: dan-nob
    metrics:
       - name: BLEU
         type: bleu
         value: 78.2
       - name: chr-F
         type: chrf
         value: 0.87556
  - task:
      name: Translation dan-swe
      type: translation
      args: dan-swe
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: dan-swe
    metrics:
       - name: BLEU
         type: bleu
         value: 72.5
       - name: chr-F
         type: chrf
         value: 0.83556
  - task:
      name: Translation nno-nob
      type: translation
      args: nno-nob
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: nno-nob
    metrics:
       - name: BLEU
         type: bleu
         value: 78.9
       - name: chr-F
         type: chrf
         value: 0.88349
  - task:
      name: Translation nob-dan
      type: translation
      args: nob-dan
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: nob-dan
    metrics:
       - name: BLEU
         type: bleu
         value: 73.9
       - name: chr-F
         type: chrf
         value: 0.85345
  - task:
      name: Translation nob-nno
      type: translation
      args: nob-nno
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: nob-nno
    metrics:
       - name: BLEU
         type: bleu
         value: 55.2
       - name: chr-F
         type: chrf
         value: 0.74571
  - task:
      name: Translation nob-swe
      type: translation
      args: nob-swe
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: nob-swe
    metrics:
       - name: BLEU
         type: bleu
         value: 73.9
       - name: chr-F
         type: chrf
         value: 0.84747
  - task:
      name: Translation swe-dan
      type: translation
      args: swe-dan
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: swe-dan
    metrics:
       - name: BLEU
         type: bleu
         value: 72.6
       - name: chr-F
         type: chrf
         value: 0.83392
  - task:
      name: Translation swe-nob
      type: translation
      args: swe-nob
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: swe-nob
    metrics:
       - name: BLEU
         type: bleu
         value: 76.3
       - name: chr-F
         type: chrf
         value: 0.85815
---
# opus-mt-tc-big-gmq-gmq

## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)

## Model Details

Neural machine translation model for translating from North Germanic languages (gmq) to North Germanic languages (gmq).

This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2022-07-29
- **License:** CC-BY-4.0
- **Language(s):**  
  - Source Language(s): dan fao isl nno nob nor swe
  - Target Language(s): dan isl nno nob nor swe
  - Language Pair(s): dan-isl dan-nob dan-swe isl-dan isl-nob isl-swe nno-nob nob-dan nob-isl nob-nno nob-swe swe-dan swe-isl swe-nob
  - Valid Target Language Labels: >>dan<< >>fao<< >>isl<< >>jut<< >>nno<< >>nob<< >>non<< >>nrn<< >>ovd<< >>qer<< >>rmg<< >>swe<<
- **Original Model**: [opusTCv20210807_transformer-big_2022-07-29.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.zip)
- **Resources for more information:**
  - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
  - More information about released models for this language pair: [OPUS-MT gmq-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-gmq/README.md)
  - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
  - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<`

## Uses

This model can be used for translation and text-to-text generation.

## Risks, Limitations and Biases

**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**

Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).

## How to Get Started With the Model

A short example code:

```python
from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>fao<< Jeg er bange for kakerlakker.",
    ">>nob<< Vladivostok är en stad i Ryssland."
]

model_name = "pytorch-models/opus-mt-tc-big-gmq-gmq"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Tað eru uml.
#     Vladivostok er en by i Russland.
```

You can also use OPUS-MT models with the transformers pipelines, for example:

```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-gmq")
print(pipe(">>fao<< Jeg er bange for kakerlakker."))

# expected output: Tað eru uml.
```

## Training

- **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:**  transformer-big
- **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-29.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)

## Evaluation

* test set translations: [opusTCv20210807_transformer-big_2022-07-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.test.txt)
* test set scores: [opusTCv20210807_transformer-big_2022-07-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)

| langpair | testset | chr-F | BLEU  | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| dan-nob | tatoeba-test-v2021-08-07 | 0.87556 | 78.2 | 1299 | 9620 |
| dan-swe | tatoeba-test-v2021-08-07 | 0.83556 | 72.5 | 1549 | 10060 |
| nno-nob | tatoeba-test-v2021-08-07 | 0.88349 | 78.9 | 467 | 3129 |
| nob-dan | tatoeba-test-v2021-08-07 | 0.85345 | 73.9 | 1299 | 9794 |
| nob-nno | tatoeba-test-v2021-08-07 | 0.74571 | 55.2 | 466 | 3141 |
| nob-swe | tatoeba-test-v2021-08-07 | 0.84747 | 73.9 | 563 | 3698 |
| swe-dan | tatoeba-test-v2021-08-07 | 0.83392 | 72.6 | 1549 | 10239 |
| swe-nob | tatoeba-test-v2021-08-07 | 0.85815 | 76.3 | 563 | 3708 |
| isl-swe | europeana2021 | 0.45562 | 22.2 | 563 | 10293 |
| nob-isl | europeana2021 | 0.54171 | 29.7 | 538 | 9932 |
| nob-swe | europeana2021 | 0.73891 | 54.0 | 538 | 9885 |
| dan-isl | flores101-devtest | 0.50227 | 22.2 | 1012 | 22834 |
| dan-nob | flores101-devtest | 0.58445 | 28.6 | 1012 | 23873 |
| dan-swe | flores101-devtest | 0.65000 | 38.5 | 1012 | 23121 |
| isl-dan | flores101-devtest | 0.53630 | 27.2 | 1012 | 24638 |
| isl-nob | flores101-devtest | 0.49434 | 20.5 | 1012 | 23873 |
| isl-swe | flores101-devtest | 0.53373 | 26.0 | 1012 | 23121 |
| nob-dan | flores101-devtest | 0.59657 | 31.7 | 1012 | 24638 |
| nob-isl | flores101-devtest | 0.47432 | 18.9 | 1012 | 22834 |
| nob-swe | flores101-devtest | 0.60030 | 31.3 | 1012 | 23121 |
| swe-dan | flores101-devtest | 0.64340 | 39.0 | 1012 | 24638 |
| swe-isl | flores101-devtest | 0.49590 | 21.7 | 1012 | 22834 |
| swe-nob | flores101-devtest | 0.58336 | 28.9 | 1012 | 23873 |

## Citation Information

* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)

```
@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}
```

## Acknowledgements

The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.

## Model conversion info

* transformers version: 4.16.2
* OPUS-MT git hash: 8b9f0b0
* port time: Fri Aug 12 23:59:02 EEST 2022
* port machine: LM0-400-22516.local