File size: 9,888 Bytes
31365fd b59b431 31365fd df6dfc5 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 df6dfc5 b59b431 31365fd b59b431 31365fd b59b431 31365fd b59b431 31365fd b59b431 31365fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
---
language:
- en
- fr
- multilingual
license: cc-by-4.0
tags:
- translation
- opus-mt-tc
model-index:
- name: opus-mt-tc-big-fr-en
results:
- task:
type: translation
name: Translation fra-eng
dataset:
name: flores101-devtest
type: flores_101
args: fra eng devtest
metrics:
- type: bleu
value: 46.0
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: multi30k_test_2016_flickr
type: multi30k-2016_flickr
args: fra-eng
metrics:
- type: bleu
value: 49.7
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: multi30k_test_2017_flickr
type: multi30k-2017_flickr
args: fra-eng
metrics:
- type: bleu
value: 52.0
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: multi30k_test_2017_mscoco
type: multi30k-2017_mscoco
args: fra-eng
metrics:
- type: bleu
value: 50.6
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: multi30k_test_2018_flickr
type: multi30k-2018_flickr
args: fra-eng
metrics:
- type: bleu
value: 44.9
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: news-test2008
type: news-test2008
args: fra-eng
metrics:
- type: bleu
value: 26.5
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: newsdiscussdev2015
type: newsdiscussdev2015
args: fra-eng
metrics:
- type: bleu
value: 34.4
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: newsdiscusstest2015
type: newsdiscusstest2015
args: fra-eng
metrics:
- type: bleu
value: 40.2
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-eng
metrics:
- type: bleu
value: 59.8
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: tico19-test
type: tico19-test
args: fra-eng
metrics:
- type: bleu
value: 41.3
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: newstest2009
type: wmt-2009-news
args: fra-eng
metrics:
- type: bleu
value: 30.4
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: newstest2010
type: wmt-2010-news
args: fra-eng
metrics:
- type: bleu
value: 33.4
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: newstest2011
type: wmt-2011-news
args: fra-eng
metrics:
- type: bleu
value: 33.8
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: newstest2012
type: wmt-2012-news
args: fra-eng
metrics:
- type: bleu
value: 33.6
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: newstest2013
type: wmt-2013-news
args: fra-eng
metrics:
- type: bleu
value: 34.8
name: BLEU
- task:
type: translation
name: Translation fra-eng
dataset:
name: newstest2014
type: wmt-2014-news
args: fra-eng
metrics:
- type: bleu
value: 39.4
name: BLEU
---
# opus-mt-tc-big-fr-en
Neural machine translation model for translating from French (fr) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT � Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge � Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-09
* source language(s): fra
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip)
* more information released models: [OPUS-MT fra-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"J'ai ador� l'Angleterre.",
"C'�tait la seule chose � faire."
]
model_name = "pytorch-models/opus-mt-tc-big-fr-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# I loved England.
# It was the only thing to do.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-en")
print(pipe("J'ai ador� l'Angleterre."))
# expected output: I loved England.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| fra-eng | tatoeba-test-v2021-08-07 | 0.73772 | 59.8 | 12681 | 101754 |
| fra-eng | flores101-devtest | 0.69350 | 46.0 | 1012 | 24721 |
| fra-eng | multi30k_test_2016_flickr | 0.68005 | 49.7 | 1000 | 12955 |
| fra-eng | multi30k_test_2017_flickr | 0.70596 | 52.0 | 1000 | 11374 |
| fra-eng | multi30k_test_2017_mscoco | 0.69356 | 50.6 | 461 | 5231 |
| fra-eng | multi30k_test_2018_flickr | 0.65751 | 44.9 | 1071 | 14689 |
| fra-eng | newsdiscussdev2015 | 0.59008 | 34.4 | 1500 | 27759 |
| fra-eng | newsdiscusstest2015 | 0.62603 | 40.2 | 1500 | 26982 |
| fra-eng | newssyscomb2009 | 0.57488 | 31.1 | 502 | 11818 |
| fra-eng | news-test2008 | 0.54316 | 26.5 | 2051 | 49380 |
| fra-eng | newstest2009 | 0.56959 | 30.4 | 2525 | 65399 |
| fra-eng | newstest2010 | 0.59561 | 33.4 | 2489 | 61711 |
| fra-eng | newstest2011 | 0.60271 | 33.8 | 3003 | 74681 |
| fra-eng | newstest2012 | 0.59507 | 33.6 | 3003 | 72812 |
| fra-eng | newstest2013 | 0.59691 | 34.8 | 3000 | 64505 |
| fra-eng | newstest2014 | 0.64533 | 39.4 | 3003 | 70708 |
| fra-eng | tico19-test | 0.63326 | 41.3 | 2100 | 56323 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union�s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union�s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 19:02:28 EEST 2022
* port machine: LM0-400-22516.local
|