tiedeman commited on
Commit
abab3f8
·
1 Parent(s): abff38a

Initial commit

Browse files
.gitattributes CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - bg
4
+ - en
5
+
6
+ tags:
7
+ - translation
8
+
9
+ license: cc-by-4.0
10
+ model-index:
11
+ - name: opus-mt-tc-big-en-bg
12
+ results:
13
+ - task:
14
+ name: Translation eng-bul
15
+ type: translation
16
+ args: eng-bul
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng bul devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 44.9
25
+ - task:
26
+ name: Translation eng-bul
27
+ type: translation
28
+ args: eng-bul
29
+ dataset:
30
+ name: tatoeba-test-v2021-08-07
31
+ type: tatoeba_mt
32
+ args: eng-bul
33
+ metrics:
34
+ - name: BLEU
35
+ type: bleu
36
+ value: 51.5
37
+ ---
38
+ # opus-mt-tc-big-en-bg
39
+
40
+ Neural machine translation model for translating from English (en) to Bulgarian (bg).
41
+
42
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
43
+
44
+ * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
45
+
46
+ ```
47
+ @inproceedings{tiedemann-thottingal-2020-opus,
48
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
49
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
50
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
51
+ month = nov,
52
+ year = "2020",
53
+ address = "Lisboa, Portugal",
54
+ publisher = "European Association for Machine Translation",
55
+ url = "https://aclanthology.org/2020.eamt-1.61",
56
+ pages = "479--480",
57
+ }
58
+
59
+ @inproceedings{tiedemann-2020-tatoeba,
60
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
61
+ author = {Tiedemann, J{\"o}rg},
62
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
63
+ month = nov,
64
+ year = "2020",
65
+ address = "Online",
66
+ publisher = "Association for Computational Linguistics",
67
+ url = "https://aclanthology.org/2020.wmt-1.139",
68
+ pages = "1174--1182",
69
+ }
70
+ ```
71
+
72
+ ## Model info
73
+
74
+ * Release: 2022-02-25
75
+ * source language(s): eng
76
+ * target language(s): bul
77
+ * model: transformer-big
78
+ * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
79
+ * tokenization: SentencePiece (spm32k,spm32k)
80
+ * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bul/opusTCv20210807+bt_transformer-big_2022-02-25.zip)
81
+ * more information released models: [OPUS-MT eng-bul README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-bul/README.md)
82
+
83
+ ## Usage
84
+
85
+ A short example code:
86
+
87
+ ```python
88
+ from transformers import MarianMTModel, MarianTokenizer
89
+
90
+ src_text = [
91
+ "2001 is the year when the 21st century begins.",
92
+ "This is Copacabana!"
93
+ ]
94
+
95
+ model_name = "pytorch-models/opus-mt-tc-big-en-bg"
96
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
97
+ model = MarianMTModel.from_pretrained(model_name)
98
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
99
+
100
+ for t in translated:
101
+ print( tokenizer.decode(t, skip_special_tokens=True) )
102
+
103
+ # expected output:
104
+ # 2001 е годината, в която започва 21-ви век.
105
+ # Това е Копакабана!
106
+ ```
107
+
108
+ You can also use OPUS-MT models with the transformers pipelines, for example:
109
+
110
+ ```python
111
+ from transformers import pipeline
112
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-bg")
113
+ print(pipe("2001 is the year when the 21st century begins."))
114
+
115
+ # expected output: 2001 е годината, в която започва 21-ви век.
116
+ ```
117
+
118
+ ## Benchmarks
119
+
120
+ * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bul/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt)
121
+ * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bul/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt)
122
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
123
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
124
+
125
+ | langpair | testset | chr-F | BLEU | #sent | #words |
126
+ |----------|---------|-------|-------|-------|--------|
127
+ | eng-bul | tatoeba-test-v2021-08-07 | 0.68987 | 51.5 | 10000 | 69504 |
128
+ | eng-bul | flores101-devtest | 0.69891 | 44.9 | 1012 | 24700 |
129
+
130
+ ## Acknowledgements
131
+
132
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
133
+
134
+ ## Model conversion info
135
+
136
+ * transformers version: 4.16.2
137
+ * OPUS-MT git hash: 3405783
138
+ * port time: Wed Apr 13 16:29:32 EEST 2022
139
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ eng-bul flores101-dev 0.69170 43.9 997 23520
2
+ eng-bul flores101-devtest 0.69891 44.9 1012 24700
3
+ eng-bul tatoeba-test-v2020-07-28 0.68986 51.5 10000 69504
4
+ eng-bul tatoeba-test-v2021-03-30 0.68986 51.5 10000 69504
5
+ eng-bul tatoeba-test-v2021-08-07 0.68987 51.5 10000 69504
benchmark_translations.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f68cf30a94e8278debda03a800a779538423903d30a997a806792241061132f
3
+ size 1506740
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "relu",
4
+ "architectures": [
5
+ "MarianMTModel"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "bad_words_ids": [
9
+ [
10
+ 60426
11
+ ]
12
+ ],
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": 0.0,
15
+ "d_model": 1024,
16
+ "decoder_attention_heads": 16,
17
+ "decoder_ffn_dim": 4096,
18
+ "decoder_layerdrop": 0.0,
19
+ "decoder_layers": 6,
20
+ "decoder_start_token_id": 60426,
21
+ "decoder_vocab_size": 60427,
22
+ "dropout": 0.1,
23
+ "encoder_attention_heads": 16,
24
+ "encoder_ffn_dim": 4096,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 6,
27
+ "eos_token_id": 25548,
28
+ "forced_eos_token_id": 25548,
29
+ "init_std": 0.02,
30
+ "is_encoder_decoder": true,
31
+ "max_length": 512,
32
+ "max_position_embeddings": 1024,
33
+ "model_type": "marian",
34
+ "normalize_embedding": false,
35
+ "num_beams": 4,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 60426,
38
+ "scale_embedding": true,
39
+ "share_encoder_decoder_embeddings": true,
40
+ "static_position_embeddings": true,
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.18.0.dev0",
43
+ "use_cache": true,
44
+ "vocab_size": 60427
45
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f487b16d8662c8a01f13d2c24624d9b27c601af59add076868dfa0982d3109fd
3
+ size 600436291
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2aa5f560397dbe2eff8dbf7934c9f44c1002c1bf04e494529f5377eef2582225
3
+ size 804415
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:556cf31670b622f9b1239290d54ebce1c31dbe419ba202534291eb1d881927f5
3
+ size 1014652
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "en", "target_lang": "bg", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20210807+bt_transformer-big_2022-02-25/en-bg", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff