lbourdois commited on
Commit
ceff73c
1 Parent(s): 54c6c21

Add multilingual to the language tag

Browse files

Hi! A PR to add multilingual to the language tag to improve the referencing.

Files changed (1) hide show
  1. README.md +18 -46
README.md CHANGED
@@ -5,73 +5,45 @@ language:
5
  - cy
6
  - en
7
  - ga
 
 
8
  tags:
9
  - translation
10
  - opus-mt-tc
11
- license: cc-by-4.0
12
  model-index:
13
  - name: opus-mt-tc-big-cel-en
14
  results:
15
  - task:
16
- name: Translation cym-eng
17
  type: translation
18
- args: cym-eng
19
  dataset:
20
  name: flores101-devtest
21
  type: flores_101
22
  args: cym eng devtest
23
  metrics:
24
- - name: BLEU
25
- type: bleu
26
  value: 50.2
27
- - task:
28
- name: Translation gle-eng
29
- type: translation
30
- args: gle-eng
31
- dataset:
32
- name: flores101-devtest
33
- type: flores_101
34
- args: gle eng devtest
35
- metrics:
36
- - name: BLEU
37
- type: bleu
38
  value: 37.4
 
39
  - task:
40
- name: Translation bre-eng
41
  type: translation
42
- args: bre-eng
43
  dataset:
44
  name: tatoeba-test-v2021-08-07
45
  type: tatoeba_mt
46
  args: bre-eng
47
  metrics:
48
- - name: BLEU
49
- type: bleu
50
  value: 36.1
51
- - task:
52
- name: Translation cym-eng
53
- type: translation
54
- args: cym-eng
55
- dataset:
56
- name: tatoeba-test-v2021-08-07
57
- type: tatoeba_mt
58
- args: cym-eng
59
- metrics:
60
- - name: BLEU
61
- type: bleu
62
  value: 53.6
63
- - task:
64
- name: Translation gle-eng
65
- type: translation
66
- args: gle-eng
67
- dataset:
68
- name: tatoeba-test-v2021-08-07
69
- type: tatoeba_mt
70
- args: gle-eng
71
- metrics:
72
- - name: BLEU
73
- type: bleu
74
  value: 57.7
 
75
  ---
76
  # opus-mt-tc-big-cel-en
77
 
@@ -79,7 +51,7 @@ Neural machine translation model for translating from Celtic languages (cel) to
79
 
80
  This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
81
 
82
- * Publications: [OPUS-MT Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
83
 
84
  ```
85
  @inproceedings{tiedemann-thottingal-2020-opus,
@@ -126,7 +98,7 @@ A short example code:
126
  from transformers import MarianMTModel, MarianTokenizer
127
 
128
  src_text = [
129
- "A-du emaoch?",
130
  "Ta'n ushtey glen."
131
  ]
132
 
@@ -148,7 +120,7 @@ You can also use OPUS-MT models with the transformers pipelines, for example:
148
  ```python
149
  from transformers import pipeline
150
  pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-cel-en")
151
- print(pipe("A-du emaoch?"))
152
 
153
  # expected output: Is that you?
154
  ```
@@ -170,7 +142,7 @@ print(pipe("A-du emaoc’h?"))
170
 
171
  ## Acknowledgements
172
 
173
- The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
174
 
175
  ## Model conversion info
176
 
 
5
  - cy
6
  - en
7
  - ga
8
+ - multilingual
9
+ license: cc-by-4.0
10
  tags:
11
  - translation
12
  - opus-mt-tc
 
13
  model-index:
14
  - name: opus-mt-tc-big-cel-en
15
  results:
16
  - task:
 
17
  type: translation
18
+ name: Translation cym-eng
19
  dataset:
20
  name: flores101-devtest
21
  type: flores_101
22
  args: cym eng devtest
23
  metrics:
24
+ - type: bleu
 
25
  value: 50.2
26
+ name: BLEU
27
+ - type: bleu
 
 
 
 
 
 
 
 
 
28
  value: 37.4
29
+ name: BLEU
30
  - task:
 
31
  type: translation
32
+ name: Translation bre-eng
33
  dataset:
34
  name: tatoeba-test-v2021-08-07
35
  type: tatoeba_mt
36
  args: bre-eng
37
  metrics:
38
+ - type: bleu
 
39
  value: 36.1
40
+ name: BLEU
41
+ - type: bleu
 
 
 
 
 
 
 
 
 
42
  value: 53.6
43
+ name: BLEU
44
+ - type: bleu
 
 
 
 
 
 
 
 
 
45
  value: 57.7
46
+ name: BLEU
47
  ---
48
  # opus-mt-tc-big-cel-en
49
 
 
51
 
52
  This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
53
 
54
+ * Publications: [OPUS-MT Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
55
 
56
  ```
57
  @inproceedings{tiedemann-thottingal-2020-opus,
 
98
  from transformers import MarianMTModel, MarianTokenizer
99
 
100
  src_text = [
101
+ "A-du emaoch?",
102
  "Ta'n ushtey glen."
103
  ]
104
 
 
120
  ```python
121
  from transformers import pipeline
122
  pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-cel-en")
123
+ print(pipe("A-du emaoch?"))
124
 
125
  # expected output: Is that you?
126
  ```
 
142
 
143
  ## Acknowledgements
144
 
145
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
146
 
147
  ## Model conversion info
148