tiedeman commited on
Commit
e9c62f2
·
1 Parent(s): 7b78a06

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - am
5
+ - ar
6
+ - arc
7
+ - de
8
+ - en
9
+ - es
10
+ - fr
11
+ - hbo
12
+ - he
13
+ - jpa
14
+ - mt
15
+ - oar
16
+ - phn
17
+ - pt
18
+ - sgw
19
+ - syc
20
+ - syr
21
+ - ti
22
+ - tig
23
+ - tmr
24
+
25
+ tags:
26
+ - translation
27
+ - opus-mt-tc-bible
28
+
29
+ license: apache-2.0
30
+ model-index:
31
+ - name: opus-mt-tc-bible-big-deu_eng_fra_por_spa-sem
32
+ results:
33
+ - task:
34
+ name: Translation multi-multi
35
+ type: translation
36
+ args: multi-multi
37
+ dataset:
38
+ name: tatoeba-test-v2020-07-28-v2023-09-26
39
+ type: tatoeba_mt
40
+ args: multi-multi
41
+ metrics:
42
+ - name: BLEU
43
+ type: bleu
44
+ value: 28.5
45
+ - name: chr-F
46
+ type: chrf
47
+ value: 0.53855
48
+ ---
49
+ # opus-mt-tc-bible-big-deu_eng_fra_por_spa-sem
50
+
51
+ ## Table of Contents
52
+ - [Model Details](#model-details)
53
+ - [Uses](#uses)
54
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
55
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
56
+ - [Training](#training)
57
+ - [Evaluation](#evaluation)
58
+ - [Citation Information](#citation-information)
59
+ - [Acknowledgements](#acknowledgements)
60
+
61
+ ## Model Details
62
+
63
+ Neural machine translation model for translating from unknown (deu+eng+fra+por+spa) to Semitic languages (sem).
64
+
65
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
66
+ **Model Description:**
67
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
68
+ - **Model Type:** Translation (transformer-big)
69
+ - **Release**: 2024-05-30
70
+ - **License:** Apache-2.0
71
+ - **Language(s):**
72
+ - Source Language(s): deu eng fra por spa
73
+ - Target Language(s): acm afb amh apc ara arc arq arz hbo heb jpa mlt oar phn sgw syc syr tig tir tmr
74
+ - Valid Target Language Labels: >>acm<< >>afb<< >>agj<< >>aij<< >>akk<< >>amh<< >>amw<< >>apc<< >>ara<< >>arc<< >>arq<< >>arz<< >>bhm<< >>bhn<< >>bjf<< >>dlk<< >>gdq<< >>gez<< >>gft<< >>gru<< >>har<< >>hbo<< >>hbo_Hebr<< >>heb<< >>hoh<< >>hrt<< >>hss<< >>huy<< >>inm<< >>ior<< >>jpa<< >>jpa_Hebr<< >>jrb<< >>kcn<< >>kqd<< >>lhs<< >>lsd<< >>mey<< >>mid<< >>mlt<< >>mvz<< >>mys<< >>myz<< >>oar<< >>oar_Hebr<< >>oar_Syrc<< >>phn<< >>phn_Phnx<< >>rzh<< >>sam<< >>sgw<< >>shv<< >>smp<< >>sqr<< >>sqt<< >>stv<< >>syc<< >>syn<< >>syr<< >>tig<< >>tir<< >>tmr<< >>tmr_Hebr<< >>trg<< >>tru<< >>uga<< >>wle<< >>xaa<< >>xeb<< >>xhd<< >>xna<< >>xpu<< >>xqt<< >>xsa<< >>zwa<<
75
+ - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-sem/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
76
+ - **Resources for more information:**
77
+ - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-sem/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
78
+ - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
79
+ - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
80
+ - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
81
+ - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
82
+ - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
83
+
84
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>acm<<`
85
+
86
+ ## Uses
87
+
88
+ This model can be used for translation and text-to-text generation.
89
+
90
+ ## Risks, Limitations and Biases
91
+
92
+ **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
93
+
94
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
95
+
96
+ ## How to Get Started With the Model
97
+
98
+ A short example code:
99
+
100
+ ```python
101
+ from transformers import MarianMTModel, MarianTokenizer
102
+
103
+ src_text = [
104
+ ">>acm<< Replace this with text in an accepted source language.",
105
+ ">>tmr<< This is the second sentence."
106
+ ]
107
+
108
+ model_name = "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-sem"
109
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
110
+ model = MarianMTModel.from_pretrained(model_name)
111
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
112
+
113
+ for t in translated:
114
+ print( tokenizer.decode(t, skip_special_tokens=True) )
115
+ ```
116
+
117
+ You can also use OPUS-MT models with the transformers pipelines, for example:
118
+
119
+ ```python
120
+ from transformers import pipeline
121
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-sem")
122
+ print(pipe(">>acm<< Replace this with text in an accepted source language."))
123
+ ```
124
+
125
+ ## Training
126
+
127
+ - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
128
+ - **Pre-processing**: SentencePiece (spm32k,spm32k)
129
+ - **Model Type:** transformer-big
130
+ - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-sem/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
131
+ - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
132
+
133
+ ## Evaluation
134
+
135
+ * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-sem/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
136
+ * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-sem/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt)
137
+ * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-sem/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt)
138
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
139
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
140
+
141
+ | langpair | testset | chr-F | BLEU | #sent | #words |
142
+ |----------|---------|-------|-------|-------|--------|
143
+ | multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.53855 | 28.5 | 10000 | 59613 |
144
+
145
+ ## Citation Information
146
+
147
+ * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
148
+
149
+ ```bibtex
150
+ @article{tiedemann2023democratizing,
151
+ title={Democratizing neural machine translation with {OPUS-MT}},
152
+ author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
153
+ journal={Language Resources and Evaluation},
154
+ number={58},
155
+ pages={713--755},
156
+ year={2023},
157
+ publisher={Springer Nature},
158
+ issn={1574-0218},
159
+ doi={10.1007/s10579-023-09704-w}
160
+ }
161
+
162
+ @inproceedings{tiedemann-thottingal-2020-opus,
163
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
164
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
165
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
166
+ month = nov,
167
+ year = "2020",
168
+ address = "Lisboa, Portugal",
169
+ publisher = "European Association for Machine Translation",
170
+ url = "https://aclanthology.org/2020.eamt-1.61",
171
+ pages = "479--480",
172
+ }
173
+
174
+ @inproceedings{tiedemann-2020-tatoeba,
175
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
176
+ author = {Tiedemann, J{\"o}rg},
177
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
178
+ month = nov,
179
+ year = "2020",
180
+ address = "Online",
181
+ publisher = "Association for Computational Linguistics",
182
+ url = "https://aclanthology.org/2020.wmt-1.139",
183
+ pages = "1174--1182",
184
+ }
185
+ ```
186
+
187
+ ## Acknowledgements
188
+
189
+ The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
190
+
191
+ ## Model conversion info
192
+
193
+ * transformers version: 4.45.1
194
+ * OPUS-MT git hash: 0882077
195
+ * port time: Tue Oct 8 10:31:45 EEST 2024
196
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ multi-multi tatoeba-test-v2020-07-28-v2023-09-26 0.53855 28.5 10000 59613
benchmark_translations.zip ADDED
File without changes
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-sem",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "MarianMTModel"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": 0.0,
11
+ "d_model": 1024,
12
+ "decoder_attention_heads": 16,
13
+ "decoder_ffn_dim": 4096,
14
+ "decoder_layerdrop": 0.0,
15
+ "decoder_layers": 6,
16
+ "decoder_start_token_id": 61338,
17
+ "decoder_vocab_size": 61339,
18
+ "dropout": 0.1,
19
+ "encoder_attention_heads": 16,
20
+ "encoder_ffn_dim": 4096,
21
+ "encoder_layerdrop": 0.0,
22
+ "encoder_layers": 6,
23
+ "eos_token_id": 541,
24
+ "forced_eos_token_id": null,
25
+ "init_std": 0.02,
26
+ "is_encoder_decoder": true,
27
+ "max_length": null,
28
+ "max_position_embeddings": 1024,
29
+ "model_type": "marian",
30
+ "normalize_embedding": false,
31
+ "num_beams": null,
32
+ "num_hidden_layers": 6,
33
+ "pad_token_id": 61338,
34
+ "scale_embedding": true,
35
+ "share_encoder_decoder_embeddings": true,
36
+ "static_position_embeddings": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.45.1",
39
+ "use_cache": true,
40
+ "vocab_size": 61339
41
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 61338
6
+ ]
7
+ ],
8
+ "bos_token_id": 0,
9
+ "decoder_start_token_id": 61338,
10
+ "eos_token_id": 541,
11
+ "forced_eos_token_id": 541,
12
+ "max_length": 512,
13
+ "num_beams": 4,
14
+ "pad_token_id": 61338,
15
+ "transformers_version": "4.45.1"
16
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992963631fabc63889567503efe6e3b4fd495405cc1241dbf0ecb10d19bce5f4
3
+ size 956949020
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfb6357e253c584861ea724a71b5cccfd15e8831844791fa1a181af378653456
3
+ size 957000261
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2165c5602c9d5beb2f276a333577aec422f63ff399a03dc8903a48d05250d16b
3
+ size 811250
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6579f78dd3d94b67a86955e9c707bea65f656ceddbec0c7a3f546e60762265aa
3
+ size 848550
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "deu+eng+fra+por+spa", "target_lang": "sem", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30/deu+eng+fra+por+spa-sem", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff