tiedeman commited on
Commit
0539ddc
·
1 Parent(s): 30a5c3c

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ - uk
5
+
6
+ tags:
7
+ - translation
8
+
9
+ license: cc-by-4.0
10
+ model-index:
11
+ - name: opus-mt-tc-base-uk-tr
12
+ results:
13
+ - task:
14
+ name: Translation ukr-tur
15
+ type: translation
16
+ args: ukr-tur
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: ukr tur devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 20.5
25
+ - task:
26
+ name: Translation ukr-tur
27
+ type: translation
28
+ args: ukr-tur
29
+ dataset:
30
+ name: tatoeba-test-v2021-08-07
31
+ type: tatoeba_mt
32
+ args: ukr-tur
33
+ metrics:
34
+ - name: BLEU
35
+ type: bleu
36
+ value: 45.2
37
+ ---
38
+ # opus-mt-tc-base-uk-tr
39
+
40
+ Neural machine translation model for translating from Ukrainian (uk) to Turkish (tr).
41
+
42
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
43
+
44
+ * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
45
+
46
+ ```
47
+ @inproceedings{tiedemann-thottingal-2020-opus,
48
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
49
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
50
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
51
+ month = nov,
52
+ year = "2020",
53
+ address = "Lisboa, Portugal",
54
+ publisher = "European Association for Machine Translation",
55
+ url = "https://aclanthology.org/2020.eamt-1.61",
56
+ pages = "479--480",
57
+ }
58
+
59
+ @inproceedings{tiedemann-2020-tatoeba,
60
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
61
+ author = {Tiedemann, J{\"o}rg},
62
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
63
+ month = nov,
64
+ year = "2020",
65
+ address = "Online",
66
+ publisher = "Association for Computational Linguistics",
67
+ url = "https://aclanthology.org/2020.wmt-1.139",
68
+ pages = "1174--1182",
69
+ }
70
+ ```
71
+
72
+ ## Model info
73
+
74
+ * Release: 2022-03-07
75
+ * source language(s): ukr
76
+ * target language(s):
77
+ * valid target language labels:
78
+ * model: transformer-align
79
+ * data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
80
+ * tokenization: SentencePiece (spm32k,spm32k)
81
+ * original model: [opusTCv20210807+pft_transformer-align_2022-03-07.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-tur/opusTCv20210807+pft_transformer-align_2022-03-07.zip)
82
+ * more information released models: [OPUS-MT ukr-tur README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-tur/README.md)
83
+ * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)
84
+
85
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>><<`
86
+
87
+ ## Usage
88
+
89
+ A short example code:
90
+
91
+ ```python
92
+ from transformers import MarianMTModel, MarianTokenizer
93
+
94
+ src_text = [
95
+ ">>tur<< Тисячі єн достатньо?",
96
+ ">>tur<< Цюріх — місто у Швейцарії."
97
+ ]
98
+
99
+ model_name = "pytorch-models/opus-mt-tc-base-uk-tr"
100
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
101
+ model = MarianMTModel.from_pretrained(model_name)
102
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
103
+
104
+ for t in translated:
105
+ print( tokenizer.decode(t, skip_special_tokens=True) )
106
+
107
+ # expected output:
108
+ # Binlerce yen yeterli mi?
109
+ # Zürih, İsviçre'de bir şehirdir.
110
+ ```
111
+
112
+ You can also use OPUS-MT models with the transformers pipelines, for example:
113
+
114
+ ```python
115
+ from transformers import pipeline
116
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-uk-tr")
117
+ print(pipe(">>tur<< Тисячі єн достатньо?"))
118
+
119
+ # expected output: Binlerce yen yeterli mi?
120
+ ```
121
+
122
+ ## Benchmarks
123
+
124
+ * test set translations: [opusTCv20210807+pft_transformer-align_2022-03-07.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-tur/opusTCv20210807+pft_transformer-align_2022-03-07.test.txt)
125
+ * test set scores: [opusTCv20210807+pft_transformer-align_2022-03-07.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-tur/opusTCv20210807+pft_transformer-align_2022-03-07.eval.txt)
126
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
127
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
128
+
129
+ | langpair | testset | chr-F | BLEU | #sent | #words |
130
+ |----------|---------|-------|-------|-------|--------|
131
+ | ukr-tur | tatoeba-test-v2021-08-07 | 0.70938 | 45.2 | 2520 | 11927 |
132
+ | ukr-tur | flores101-devtest | 0.54001 | 20.5 | 1012 | 20253 |
133
+
134
+ ## Acknowledgements
135
+
136
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
137
+
138
+ ## Model conversion info
139
+
140
+ * transformers version: 4.16.2
141
+ * OPUS-MT git hash: 1bdabf7
142
+ * port time: Wed Mar 23 22:02:24 EET 2022
143
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ ukr-tur flores101-devtest 0.54001 20.5 1012 20253
2
+ ukr-tur flores101-dev 0.54073 20.2 997 19181
3
+ ukr-tur tatoeba-test-v2020-07-28 0.70910 45.2 2500 11844
4
+ ukr-tur tatoeba-test-v2021-03-30 0.70940 45.2 4972 23561
5
+ ukr-tur tatoeba-test-v2021-08-07 0.70938 45.2 2520 11927
benchmark_translations.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4792b8c9fa2f757f36b6df2ab4a12e7805830ec679e1d28bf2868ee6adddb613
3
+ size 665154
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "swish",
4
+ "architectures": [
5
+ "MarianMTModel"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "bad_words_ids": [
9
+ [
10
+ 60667
11
+ ]
12
+ ],
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": 0.0,
15
+ "d_model": 512,
16
+ "decoder_attention_heads": 8,
17
+ "decoder_ffn_dim": 2048,
18
+ "decoder_layerdrop": 0.0,
19
+ "decoder_layers": 6,
20
+ "decoder_start_token_id": 60667,
21
+ "decoder_vocab_size": 60668,
22
+ "dropout": 0.1,
23
+ "encoder_attention_heads": 8,
24
+ "encoder_ffn_dim": 2048,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 6,
27
+ "eos_token_id": 24255,
28
+ "forced_eos_token_id": 24255,
29
+ "init_std": 0.02,
30
+ "is_encoder_decoder": true,
31
+ "max_length": 512,
32
+ "max_position_embeddings": 512,
33
+ "model_type": "marian",
34
+ "normalize_embedding": false,
35
+ "num_beams": 4,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 60667,
38
+ "scale_embedding": true,
39
+ "share_encoder_decoder_embeddings": true,
40
+ "static_position_embeddings": true,
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.18.0.dev0",
43
+ "use_cache": true,
44
+ "vocab_size": 60668
45
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81af44075b6e8509c99880525bfd0a7a5771cea4c140907f4cdfaee31a3f0bd9
3
+ size 212738051
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:199e7098c4f5cc1babaa5bc1cb619c0461e0e94358b108b79ee3a8bd7b22af33
3
+ size 1005573
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dad154fc1be558befd91b0e2b0a2ca28601b1646ee94e74908c76901ad5624e9
3
+ size 835601
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "uk", "target_lang": "tr", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20210807+pft_transformer-align_2022-03-07/uk-tr", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff